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Abstract

We develop a tractable model of the dynamics of chosen beliefs. An agent derives anticipatory

utility from being overly optimistic and overly certain about an underlying state of the world.

The agent repeatedly “chooses” what to believe, always naively thinking that this is the one and

only time she does so. To feel elated, she must take her chosen belief seriously, both in taking

actions and interpreting signals. Our model implies persistent insecurity and fragile optimism

in important domains of life as well as dogmatic optimism in less important domains.
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1 Introduction

People often distort their beliefs in ways that make them feel better about themselves or the world

(Eil and Rao, 2011, Zimmermann, 2020, Drobner, 2022, Möbius et al., 2022). A prominent modeling

approach (starting with Brunnermeier and Parker, 2005) formalizes this phenomenon by assuming

that at some special point in time, a person resets her belief according to some objective, and

from then on carries this new belief. Evidence and introspection suggest, however, that people do

so repeatedly. As a case in point, a person who reset her belief exactly once, and were Bayesian

otherwise, would generically be unbiased in the long run. We instead take the aforementioned

perspective seriously by asking: what if beliefs are reset repeatedly according to the same objective?

To address this question, we develop a tractable model of learning for an agent who derives

anticipatory utility from beliefs that she can “choose.” The agent wants to be overly optimistic

and certain about an underlying state of the world. She repeatedly chooses what to believe, always

naively thinking that this is the one and only time she does so. To feel elated the agent must take

her chosen belief seriously, both in taking actions and in interpreting signals about the state. We

predict a dichotomy of long-run beliefs. An agent who cares only little about the state (in terms of

consumption utility) eventually becomes dogmatic and highly overoptimistic. An agent who cares a

lot about the state, in contrast, stays forever uncertain, which makes her average optimism fragile.

We introduce our model in Section 2. Consider an agent living for T ≥ 2 periods. In every

period, the agent must guess the state of the world θ ∼ N (µ, σ2), which is drawn once and for all.

The agent then experiences consumption utility, which depends on the state and her guess, and

anticipatory utility from future consumption. The agent incurs a disutility from wrong guesses.

But, fixing the utility loss from her guess, the agent’s consumption utility increases in the state.

The agent starts out with a prior original belief about the state of the world. In every period, on

top of making a guess, the agent can choose her belief. This chosen belief shapes how she imagines

the future. By choosing to be overly optimistic about the state, the agent can anticipate a brighter

future. Moreover, by choosing to be overly certain, she can reduce the anxiety that she derives from

possibly making wrong guesses in the future. The agent is constrained, however, in that she has to

act on her chosen belief: her chosen belief determines her guess and how she updates upon receiving
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a signal on the state. Being overly optimistic, therefore, comes at the cost of making biased guesses.

In addition, being overly certain, results in the agent partly ignoring useful information, as we will

describe in detail below. Following Brunnermeier and Parker (2005), we assume that the agent

uses her original belief in a given period to — consciously or, more likely, subconsciously — trade

off the costs and benefits of choosing a different belief.

Our main innovation is allowing for the repeated choice of beliefs, which, as we argue, requires a

notion of naivete regarding belief revisions. In-between period t and t+1, the agent receives a signal

st ∈ N (θ, ν2) about the state. The agent combines this signal with her chosen belief in period t via

Bayes’ rule, which yields her original belief for period t + 1. This entails the implicit assumption

that, upon receiving a signal, the agent forgets that she has chosen her belief in the past. The

same assumption is implicit also in existing work. Going beyond the literature, we further assume

that, in every period t, the agent naively believes that this is the one and only time she chooses

her belief. If the agent anticipated re-choosing her belief in the future, she could hardly feel elated

by what she chooses to believe right now. In this sense, our notion of naivete feels psychologically

(almost) inevitable, and as we argue in this paper, it has drastic implications for belief dynamics.

We start in Section 3 by analyzing the simplest version of our model with just two periods. This

analysis is meant to transparently lay out the mechanics of the model, which will be important for

understanding belief dynamics.1 In particular, we derive a negative relationship between an agent’s

level of “optimism” (i.e., her mean belief) and “confidence” (i.e., the variance of her belief): an

agent who cares more about the state chooses to be more optimistic and less confident. The more

optimistic the agent chooses to be the more biased her guesses will be. The agent can wash out

part of the bias in her second-period guess by placing an excessive weight on the signal. Because

the agent updates her chosen belief via Bayes’ rule, however, this requires her to overstate how

uncertain she is — she has to “forget” part of what she knows. In the extreme, an agent with a

dogmatic prior may even have an incentive to invent uncertainty. This interplay of optimism and

confidence has important implications for our main interest: the dynamics of chosen beliefs.

1 The agent has no incentive to distort her belief in the second, and here last, period because there is no future she
can derive anticipatory utility from. In this sense, our model with two periods is a direct application of Brunnermeier
and Parker (2005) to a learning problem, and it identifies novel implications of their optimal-expectations framework.

2



To build some intuition for the dynamics of beliefs, consider Alex, a project-based consultant,

who loves to think of herself as being productive. As the highly productive person Alex wants,

and therefore believes, to be, she commits herself to taking over major parts of the current project.

Overoptimistic Alex soon realizes that it takes her more time than expected to deliver on what she

has promised. This humbling experience makes Alex more pessimistic. As time passes however,

and the next project is about to start, Alex begins to wonder whether she might have been too

harsh with herself in response to just one setback. Because she still likes to think of herself as being

productive, Alex chooses to be more optimistic again. At the same time, being worried that she

keeps overcommiting to work in the future, Alex also intentionally remains uncertain and thereby

(over)responsive to feedback. This raises a natural question: does Alex’s belief ever converge?

We answer this question in Section 4 by studying belief dynamics with an infinite horizon. We

compare the long-run chosen belief to three benchmarks, all of which predict that the agent’s long-

run belief concentrates on a single point. Our model makes fundamentally different predictions.

Depending on the agent’s preferences and the signal structure, she either becomes dogmatic (and

increasingly optimistic) or she stays forever uncertain around a “stable” level of overoptimism.

Consider first an agent like Alex who cares a lot about the state. Given her tendency to be

optimistic, such an agent is — consciously or, more likely, subconsciously — constantly worried

about making biased guesses in the future. As a result, even after observing infinitely many signals,

she wants to react to every new signal to correct for this bias going forward. This requires, however,

that she stays forever uncertain. We show that the agent’s chosen belief converges to a normally

distributed limit belief with an overoptimistic mean and a variance that is bounded away from zero.

At the other extreme, consider an agent who has no preferences over the state. This could be,

for example, an impartial scientist who wants to figure out the truth (on, say, polarization) and

makes public predictions (on, say, election outcomes) that affect her reputation. Because it reduces

her anxiety from making possibly wrong guesses in the future, such an agent has an incentive to

be overconfident. As the agent becomes genuinely more certain over time, she eventually convinces

herself that she knows the state exactly — she becomes dogmatic and remains biased toward her

prior. Here, our model predicts a form of “confirmation bias” (see Benjamin, 2019, for a survey).
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Finally, consider the intermediate case of an agent who cares just a little bit about the state.

Since such an agent has a moderate incentive to be optimistic, she is less worried (than Alex) about

making biased guesses in the future, and thus sees less of a need to remain responsive to signals.

Instead, to reduce anxiety, she eventually becomes dogmatic. And once she naively believes to

know truth exactly, she chooses to be a little bit more optimistic every period. Because a dogmatic

agent ignores the signals, her belief then increases deterministically over time.

We discuss the implications of our results at the hand of comparative statics that distinguish our

model from a Bayesian benchmark. A Bayesian’s long-run belief is independent of the incentives

she faces, the precision of signals, and her prior belief. All three features of the environment do

affect long-run chosen beliefs, however. For example, as we have hinted at above, our agent remains

the more uncertain in the long run the more she cares about the state. This persistent insecurity

in important domains of life makes the agent’s average optimism fragile, and it generates dramatic

— objectively unjustified — swings in beliefs. In particular, irrespective of how overoptimistic the

agent has become, a single bad signal (e.g., an overly critical comment by a colleague) can turn her

pessimistic. This combination of predictions is consistent with evidence on fragile self-esteem and

imposter syndrome (e.g., Ferrari and Thompson, 2006, Berglas, 2006).2

In Section 5, we focus on another central theme in work on motivated reasoning: information

avoidance (see Golman et al., 2017, for a survey). As noted by Spiegler (2008), to generate in-

formation avoidance in a model of chosen beliefs, we would have to add ad-hoc assumptions on

information limiting the ability to choose beliefs (or the anticipatory utility thereof). More funda-

mentally, information avoidance observed in important settings — such as not getting tested for

a genetic disease (Oster et al., 2013) — often seems too costly for being the result of a “rational”

trade-off between anticipatory and consumption utility. Instead, we suggest that these findings may

be better understood as delaying rather than avoiding information. We show that a naive agent

who cares a lot about the state may eternally delay extra information, always planning to get it

the next period. Intuitively, an agent who remains forever uncertain prefers to receive information

in the future, as otherwise, by overstating her uncertainty, she will “throw away” part of it.

2 Alex, for example, is the type of person McKinsey & Company call an “insecure overachiever” (Berglas, 2006).
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We discuss our modeling assumptions in Section 6 before we conclude in Section 7 by comment-

ing on the “stability” of long-run beliefs. On the one hand, a dogmatic agent (with preferences

over the state) becomes increasingly optimistic over time, and as a result, the signals she observes

become harder to reconcile with her original belief. It thus seems plausible that a dogmatic agent

eventually “wakes up” and questions her original belief. But, since dogmas are limited to domains

that the agent cares about little, her belief diverges slowly and dogmas may stick for a while. Per-

sistent insecurity, on the other hand, seems even more robust to introspection. Because an insecure

agent remains forever uncertain, she is less surprised by the signals she observes. This suggests

that insecure people may never come to the point of questioning their fragile optimism.

Related literature. Our paper belongs to the theoretical literature on belief-based utility and

motivated reasoning (e.g., Akerlof and Dickens, 1982, Caplin and Leahy, 2001, Bénabou and Tirole,

2002, Brunnermeier and Parker, 2005, Kőszegi, 2006, Gottlieb, 2014, Mayraz, 2019, Caplin and

Leahy, 2019). We directly build on the model of optimal expectations by Brunnermeier and Parker

(2005) as well as contemporaneous work on how people choose beliefs at the cost of worse actions

(Landier, 2000, Yariv, 2005). We deviate from existing work in that we study the repeated choice

of beliefs. Brunnermeier and Parker (2005) assume that people choose a belief exactly once and are

Bayesian otherwise. This assumption is inconsistent with experimental evidence, unless the day of

the experiment is the one special day in a subject’s life when she chooses her belief. It also implies

that any non-dogmatic belief distortion vanishes in the long run (see Remark 2 or Gottlieb, 2014).

Our model, in contrast, predicts persistent belief distortions in the presence of feedback.

On a technical note, our assumption of naivete is similar to the notion of a “naive optimist”

in Yariv (2005). Our model differs from Yariv (2005) in two respects, however. First, we assume

that the agent chooses her belief to generate anticipatory utility whereas Yariv (2005) models an

agent who chooses a belief that makes her feel better about choices taken in the past. Second and

more importantly, Yariv (2005) considers a binary state of the world, so that optimism (related

to the mean) and confidence (related to the variance) are tied together. This rules out the belief

dynamics — based on an interplay of optimism and confidence — that are central to our paper.3

3 Our naivete assumption implies time-inconsistent beliefs. This relates our paper to Brunnermeier et al. (2017)
who relax the assumption that optimal expectations must satisfy the law of iterated expectations. Still, Brunnermeier
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2 Model

In this section, we simply describe our model. A detailed discussion of our modeling assumptions,

equivalent re-formulations, and a comparison with existing models are provided in Section 6.

Utility and beliefs Consider an agent who lives for T ≥ 2 periods. In each period t, the agent

derives consumption utility u(θ, at), which depends on her action at ∈ R and an underlying state

of the world θ ∈ R. From the perspective of period t, the agent’s discounted consumption utility is

U(θ,at) = u(θ, at) +

T∑
τ=t+1

δτ−tu(θ, aτ ),

where the vector at = (at, at+1, . . . , aT ) collects all relevant (future) actions and δτ−t ∈ [0, 1] denotes

the discount factor that the agent applies to consumption utility τ periods into the future.

Coming into period t, the agent believes that θ ∼ N (µt, σ
2
t ) — we call this her original belief

in period t. The expected discounted consumption utility implied by the agent’s original belief is

Eµt,σ2
t

[
u(θ, at) +

T∑
τ=t+1

δτ−tu(θ, aτ )

]
.

To keep the model tractable, we assume that consumption utility takes a linear-quadratic form:

u(θ, a) = αθ − 1

2

(
a− θ)2 for some α ≥ 0. (1)

Furthermore, in every period t ≤ T −1, the agent derives anticipatory utility from imagining the

future. Following Brunnermeier and Parker (2005), we assume that the agent can manipulate her

anticipatory utility by choosing a belief about the state (from the set of all normal distributions).

Given a chosen belief θ ∼ N (µ̂t, σ̂
2
t ), the agent’s anticipatory utility in period t is

γEµ̂t,σ̂2
t

[
T∑

τ=t+1

ϕτ−tu(θ, aτ )

]
,

where γ ∈ R>0 measures the relative importance of anticipatory utility, and ϕτ−t ∈ R≥0 denotes

the weight that the agent puts on imagined consumption utility τ periods into the future.

et al. (2017) maintain the assumption that beliefs are chosen exactly once in order to maximize overall well-being.

6



Learning environment and updating We set up the simplest possible learning environment.

The state θ is drawn once and for all. The agent starts out with some prior belief θ ∼ N (µ1, σ
2
1).

In-between every two periods, t and t+ 1, the agent receives an unbiased signal st ∈ N (θ, ν2).

At the start of period t, the agent chooses a belief θ ∼ N (µ̂t, σ̂
2
t ), as we describe in detail below.

Our key assumption is that the agent has to act on her chosen belief in updating about the state.

Specifically, upon observing the signal st, the agent updates via Bayes’ rule, using her chosen belief

N (µ̂t, σ̂
2
t ) as the “prior.” This determines the agent’s original belief at the start of period t+ 1:

µt+1 = (1− λ̂t)µ̂t + λ̂tst and σ2
t+1 = λ̂tν

2 with λ̂t :=
σ̂2
t

σ̂2
t + ν2

. (2)

The updating we assume differs in two ways from that of a fully Bayesian agent with the same

original belief N (µt, σ
2
t ). First, in updating her mean belief, our agent starts from a different prior

— namely, µ̂t instead of µt. This entails the implicit assumption that the agent is “naive” in not

correcting for the fact that she has chosen her prior. Second, our agent may be more or less certain

than her fully Bayesian counterpart and thus places a different weight on the signal — namely, λ̂t

instead of λt :=
σ2
t

σ2
t+ν2

. Based on this second distinction, we classify three types of agents.

Definition 1 (Responses to News).

We say that the agent is dogmatic if λ̂t = 0, narrow-minded if λ̂t ∈ (0, λt), and erratic if λ̂t ∈ (λt, 1].

Throughout the paper, we will refer to a bias in the agent’s mean as over- and underoptimism,

respectively, and we will refer to a bias in her variance as either over- or underconfidence.

Action choice Following the literature, we assume that the agent must pick an action that is

optimal under her chosen belief (see Camerer and Lovallo, 1999, Allcott et al., 2020, for evidence

supporting the idea that people act on their unrealistic beliefs). Formally, we require that

at = arg maxa∈R Eµ̂t,σ̂2
t

[
u(θ, a)

]
or, using Eq. (1), at = µ̂t. (3)

Belief choice Given Eq. (1), the agent can increase anticipatory utility by choosing to be

optimistic (high µ̂t) and certain (low σ̂2
t ) about the state. Deviating from her original belief,

however, comes at the cost of worse inferences from the signals (by Eq. (2)) and worse actions
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(by Eq. (3)). Again following Brunnermeier and Parker (2005), we assume that the agent uses her

original belief in a period to — consciously or, more likely, subconsciously — trade off these costs

(in terms of consumption utility) and benefits (in terms of anticipatory utility).

In contrast to Brunnermeier and Parker (2005), we assume that the agent can choose her belief

not only once, but can re-choose it every period. In every period t, however, the agent naively

believes that this is the one and only time she chooses her belief. As a result, the agent generically

mispredicts her future beliefs and actions. LetN
(
µ̃τ (s

τ
t ), σ̃

2
τ (s

τ
t )
)
be the belief that the agent expects

(from the perspective of period t) to hold in period τ for a given sequence of signal realizations

sτt := (st, . . . , sτ−1).
4 The agent then chooses µ̂t and σ̂2

t as to maximize

Eµt,σ2
t

[
u(θ, µ̂t) +

T∑
τ=t+1

δτ−tu
(
θ, µ̃τ (s

τ
t )
)]

+ γEµ̂t,σ̂2
t

[
T∑

τ=t+1

ϕτ−tu
(
θ, µ̃τ (s

τ
t )
)]

.

Parameter restrictions As is standard, we assume ϕτ ≥ ϕτ+1 and δτ ≥ δτ+1 for all τ ≥ 1,

and we impose ϕ1, δ1 > 0. Moreover, we bound the total weight on anticipatory utility; formally,

Φ :=
∑∞

τ=1 ϕτ < ∞. We impose similar restrictions on how the agent discounts future consumption

utility; in particular, we assume that ∆ :=
∑∞

τ=1 δτ < ∞ and Ω :=
∑∞

τ=1 δττ < ∞. This permits,

for example, models of exponential and quasi-hyperbolic discounting. Finally, to simplify the

exposition of our results, we exclude the knife-edge case in which α2 = ν2(1+∆)2

2γΦΩ .

3 Short-Run Beliefs

We start by studying “short-run beliefs,” in the simplest version of our model with two periods.

Figure 1 summarizes the timing of events. In the spirit of Spiegler (2019), this section is meant to

transparently lay out the mechanics of the model before we move on to our main interest: “long-run

beliefs.” To simplify the exposition of our results, throughout this section, we assume γ ≤ 2.

We solve the agent’s problem backwards, starting in the second period. Because the world ends

after the second period, the agent does not feel anticipatory utility in t = 2. Deviating from her

original belief in t = 2 has therefore no benefit. Any such deviation still comes at the cost of taking

4 In the Online Appendix, we provide more details on the implied updating and the objective function.
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Choose

µ̂1 and λ̂1

Choose

a1

Feel

u(a1, θ) + Ant. utility

t = 1

Observe

s1

Update to

N
(
(1− λ̂1)µ̂1 + λ̂1s1, λ̂1ν

2
) Choose

µ̂2 and λ̂2

Choose

a2

Feel

u(a2, θ)

t = 2

Figure 1: Timing of events with two periods.

a (perceivedly) worse action a2. The agent thus chooses her original belief in t = 2. As a result:

Remark 1. If T = 2, the agent correctly predicts her second-period belief and action.

Furthermore, because the agent does not feel anticipatory utility in t = 2, Remark 1 also implies

that our model with two periods coincides with the original model of optimal expectations developed

by Brunnermeier and Parker (2005). We can, therefore, think of the results that we derive in this

section as identifying novel implications of Brunnermeier and Parker’s model for learning.

We now move on to study the chosen belief in t = 1. To ease notation, and without loss, we

normalize δ1 = 1 and ϕ1 = 1, and we drop all subscripts referring to the period. Moreover, because

there is a one-to-one mapping between the agent’s chosen variance σ̂2 and the weight on the signal

λ̂ (see Eq. (2)), it will be convenient to characterize the chosen belief in terms of µ̂ and λ̂.

Given a chosen belief µ̂ and λ̂ and a signal realization s, the agent will choose ã(s) = (1−λ̂)µ̂+λ̂s

in t = 2. Anticipating her second-period action, the agent chooses µ̂ and λ̂ as to maximize

αµ− 1

2
Eµ,σ2

[
(µ̂− θ)2

]
+ αµ− 1

2
Eµ,σ2

[(
(1− λ̂)µ̂+ λ̂s− θ

)2]
︸ ︷︷ ︸

expected consumption utility

+ γ

(
αµ̂− 1

2
λ̂ν2
)

︸ ︷︷ ︸
anticipatory utility

. (4)

For any given λ̂ ∈ [0, 1], the objective in Eq. (4) is strictly concave in µ̂, so the optimal µ̂ solves

−(µ̂− µ)− (1− λ̂)2(µ̂− µ) + γα = 0 or, equivalently, µ̂− µ =
αγ

1 + (1− λ̂)2
=: b(λ̂).

Proposition 1 (Overoptimism). For any λ̂ ∈ [0, 1], the optimal mean belief equals µ̂ = µ+ b(λ̂).

Because consumption utility increases in the state, the agent generates anticipatory utility by

being, on average, overly optimistic about the state. Fixing the weight λ̂, the agent chooses to be

more optimistic the more additional consumption utility she derives from an increase in the state

(i.e., the higher α) and the more weight she places on anticipatory utility (i.e., the higher γ). At the
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same time, the agent understands that overoptimism biases her action not only in the first, but also

in the second period. By overresponding to the signal (i.e., by increasing λ̂), she can counteract her

overoptimism and improve her second-period action. The agent’s optimal overoptimism, therefore,

increases in the weight she places on the signal, which in turn increases in her chosen uncertainty.

As we show in the Online Appendix, given Proposition 1, the optimal λ̂ ∈ [0, 1] maximizes

αγb(λ̂)︸ ︷︷ ︸
elation

− γ

2
λ̂ν2︸ ︷︷ ︸

anxiety

− 1

2

(
1 + (1− λ̂)2

)
b(λ̂)2︸ ︷︷ ︸

biased actions

− 1

2
(σ2 + ν2)(λ− λ̂)2︸ ︷︷ ︸

biased learning

. (5)

The first two terms in Eq. (5) reflect how the agent’s choice of certainty affects anticipatory utility.

On the one hand, the agent feels elated by imagining a better future, and by Proposition 1, her

optimism increases with her uncertainty. This gives an incentive to be overly uncertain. On the

other hand, the agent feels anxious about taking a bad second-period action, and convincing herself

that she is certain about the state of the world alleviates this anxiety. This implies an incentive

to be overly certain. The last two terms in Eq. (5) reflect how the choice of certainty shapes the

loss in consumption utility due to biased beliefs and, thus, biased actions. Being overly optimistic

directly biases first- and second-period actions. On top, when choosing to be overly (un)certain

(i.e., λ̂ ̸= λ), the agent “misinterprets” the signal, biasing her learning. Biased learning is the more

costly the larger is the agent’s overall uncertainty about the state (according to her original belief).

Proposition 2 (Over- and Underconfidence).

I. The agent chooses to be dogmatic (i.e., λ̂ = 0) if and only if α ≤
√

2
γ

(
ν2 − 2σ2

γ

)
.

II. The agent chooses to be erratic (i.e., λ̂ > λ) if and only if α >
√

ν2+σ2

2γ

(
1 +

(
ν2

ν2+σ2

)2)
.

III. Otherwise the agent chooses to be (weakly) narrow-minded (i.e., 0 < λ̂ ≤ λ).

Depending on her preferences, her prior uncertainty, and the precision of the signal, the agent

chooses to be either dogmatic, narrow-minded, or erratic. If the agent cares only little about the

state (i.e., α ≈ 0), she will be either narrow-minded or dogmatic. Such an agent has little incentive

to be overoptimistic. Hence, she can be overly certain — alleviating her anxiety — without biasing

her second-period action by too much. If such an agent is sufficiently certain already (i.e., σ2 is

low), she fully alleviates her anxiety by becoming dogmatic. If the agent cares a lot about the
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state (i.e., α is large), however, she will be erratic. Intuitively, such an agent wants to be highly

overoptimistic, and to improve her second-period action, she puts an excessive weight on the signal.

Figure 2 illustrates how the chosen uncertainty varies with preferences and prior uncertainty.

α

σ2

erratic

narrow-minded

dogmatic

Figure 2: Optimal (un)certainty depending α and σ2 for γ2 = 1 and ν2 = 2.

We conclude our analysis of short-run beliefs with an important remark on erratic updating.

By overresponding to the signal, an erratic agent effectively “throws away” part of her knowledge.

In the extreme, an erratic agent with a dogmatic prior even “makes up” uncertainty.

Corollary 1. Let σ2 = 0. The agent pretends to be uncertain (i.e., σ̂2 > 0) if and only if α >
√

2ν2

γ .

The logic of Corollary 1 will have important implications for long-run beliefs. An agent who cares

enough about the state does not want to be certain. This, in turn, suggests that even upon observing

infinitely many signals such an agent will remain uncertain — simply because she wants to.

4 Long-Run Beliefs

Our main interest lies in the long-run dynamics of chosen beliefs. For that, we consider our model

with an infinite horizon (i.e., T = ∞). We start by deriving some benchmark beliefs (Section 4.1);

then state our main result (Section 4.2); and conclude with comparative statics (Section 4.3).
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4.1 Benchmarks

As a point of comparison, we derive the long-run beliefs implied by three benchmark models. All

three benchmarks will have in common that the long-run belief concentrates on a single point.

The first benchmark is that of a correctly specified Bayesian agent. This benchmark corresponds

to the limit of our model as γ → 0. The long-run belief converges to the true state θ almost surely.

The second benchmark is that of “misdirected” Bayesian learning. We conceptualize misspecifi-

ations in our setting (with exogenous signals) by assuming that the agent believes s ∼ N (θ+ ξ, ν2)

for some ξ ∈ R. Such a misspecified Bayesian agent converges to a point belief of θ − ξ.5

Our last benchmark is Brunnermeier and Parker’s (2005) model of optimal expectations. Be-

cause the agent chooses her belief exactly once, and afterwards updates according to Bayes’ rule,

she differs from her fully Bayesian counterpart only in that she starts out with a different prior.

By implication, as long as the agent chooses a non-dogmatic prior, she learns the truth eventually.

Remark 2 (Benchmark Beliefs).

I. The long-run belief of a correctly specified Bayesian agent assigns probability 1 to θ.

II. The long-run belief of a misspecified Bayesian agent assigns probability 1 to θ − ξ.

III. Long-run optimal expectations assign probability 1 to either µ1 or θ.

4.2 Main Result: Long-Run Chosen Beliefs

The long-run belief implied by our model fundamentally differs from the three benchmarks above.

Our main result shows that, despite the state being fixed, chosen beliefs do not necessarily converge

and even if they do, the limit belief can have full support, reflecting substantial uncertainty.

Formally, the agent’s long-run belief is characterized by µ̂∞ := limt→∞ µ̂t and λ̂∞ := limt→∞ λ̂t.

In the following, we will distinguish two types of agents, depending on their long-run uncertainty.

Definition 2 (Long-Run Uncertainty).

The agent develops a dogma if λ̂t = 0 for t large enough; and she stays forever uncertain if λ̂∞ > 0.

5 In general, the belief of a misspecified Bayesian agent concentrates on the outcome distributions that approxi-
mately maximize the likelihood of observed signals (e.g., Berk, 1966, Heidhues et al., 2021, Fudenberg et al., 2023).
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As a starting point, we verify that in every period t ∈ N an optimal belief exists.

Lemma 1 (Existence).

In every period t, an optimal belief exists. The agent chooses λ̂t ∈ [0, 1) and µ̂t = µt + b(λ̂t) with

b(λ̂t) :=
αγΦ

1 +
∑∞

τ=1 δτ

(
1−λ̂t

1+(τ−1)λ̂t

)2 .
As in the two-period model analyzed in Section 3, in every period t, the agent chooses to be

optimistic, and the bias she introduces in her mean belief increases in how uncertain she chooses

to be. Other than in the two-period model, however, the agent’s naivete matters. In every period

t, the agent believes that this is the one and only time she chooses her belief and, consequently,

treats her original belief in period t as “truth.” While the agent anticipates that being optimistic

today biases her actions in all future periods, her naivete causes her to underestimate the (average)

bias in future actions. In fact, because the agent re-chooses her belief in every period (on average,

becoming more optimistic period by period), the bias in her mean belief accumulates over time.

Lemma 2 (Accumulation of Bias).

The agent’s mean belief in period t is normally distributed with an expected value of

E
[
µ̂t

]
= µ1

t−1∏
τ=1

(1− λ̂τ ) + θ
t−1∑
τ=1

λ̂τ

t−1∏
ℓ=τ+1

(1− λ̂ℓ) +
t∑

τ=1

b(λ̂τ )
t−1∏
ℓ=τ

(1− λ̂ℓ)

and a variance of

Var
(
µ̂t

)
= ν2

t−1∑
τ=1

λ̂2
τ

t−1∏
ℓ=τ+1

(1− λ̂ℓ)
2.

With the above, characterizing the agent’s long-run belief boils down to understanding how her

certainty changes over time. For that, we derive the limit weight that she places on the next signal.

Lemma 3 (Subjective (Un)Learning).

Fix any σ2
1 ∈ R≥0, ν

2 ∈ R>0, α ∈ R≥0, and γ ∈ R>0. Then, the following statements hold:

I. The sequence (λ̂t)t∈N is monotone, and it converges to a limit weight λ̂∞ ∈ [0, 1).

II. If ν2 ≤ σ2
1, the sequence (λ̂t)t∈N is decreasing.

III. If ν2 > σ2
1, there exists some α > 0, so that (λ̂t)t∈N is decreasing if and only if α < α.
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By Part I, for any given signal structure, the agent’s certainty monotonically changes over time.

Every period, the agent faces the exact same optimization problem, except for her original belief

changing over time. Intuitively, the agent chooses to be more uncertain the more uncertain she

actually is; that is, the agent’s chosen variance increases in the variance of her original belief. It

then immediately follows that the sequence of chosen variances and, consequently, the sequence

of weights on the next signal are monotone. Because λ̂t ∈ [0, 1], the sequence (λ̂t)t∈N is not only

monotone, but also bounded, and hence it must converge. Moreover, by Lemma 1, the mean bias

introduced in period t is bounded from above by αγΦ. Hence, for any given set of parameters,

the agent’s chosen mean µ̂t does contain some information on the original mean µt. As a result,

throwing away all existing information by choosing λ̂t = 1 is (perceived as) suboptimal, so λ̂∞ < 1.

Because the agent chooses her uncertainty to manage the (perceived) bias in her future actions,

unlike a Bayesian, she does not necessarily become more certain over time. This depends on the

precision of the signals and her preferences. If the signals are precise enough, the variance of the

agent’s original belief necessarily decreases from σ2
1 to σ2

2 = λ̂1ν
2 ≤ ν2 upon observing the first

signal. Hence, because she is genuinely less uncertain in the second period compared to the first,

the agent also chooses to be less uncertain. Part II then immediately follows from Part I. If the

signals are less precise, however, an erratic agent can become more uncertain over time (Part III).

As before, the agent chooses to be erratic in order to wash out the bias in future actions, which is

increasing in α. Hence, she becomes more uncertain over time if and only if α is large enough.

We can now characterize the agent’s long-run belief, and we do so in two separate steps. In a

first step, we observe that the agent either develops a dogma or stays forever uncertain.

Proposition 3 (Long-Run Uncertainty).

For any σ1 ∈ R≥0, ν
2 ∈ R>0, and γ ∈ R>0, there exists some ᾱ ∈ R>0, such that the agent develops

a dogma if α ≤ ᾱ or stays forever uncertain otherwise.

To feel less anxious about taking bad actions in the future, an agent who derives little utility from

the state being high chooses to be overly certain. And once such an agent is sufficiently certain,

she simply convinces herself that she knows the state exactly. On the other hand, an agent who

derives a lot of consumption utility from the state being high chooses to be highly optimistic and,
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therefore, remains responsive to signals. Building on the logic of Corollary 1, such an agent would

never want to be (close to) certain, staying forever uncertain as a result.

In a second step, we derive the distribution of the agent’s long-run mean belief. We identify

three types of agents, two of which become dogmatic while the third one stays forever uncertain.

Proposition 4 (Long-Run Mean Belief).

I. If α = 0, then µ̂∞ is normally distributed with

E
[
µ̂∞
]
= (1− ωE)µ1 + ωEθ and Var

(
µ̂∞
)
= ω2

V ν
2 for some ωE , ωV ∈ [0, 1).

II. If α ∈ (0, ᾱ), then E[µ̂∞] = ∞; in particular, for any t large enough,

µ̂t+1 − µ̂t =
αγΦ

1 +∆
.

III. If α > ᾱ, then µ̂∞ is normally distributed with

E
[
µ̂∞
]
= θ +

b(λ̂∞)

λ̂∞
and Var

(
µ̂∞
)
=

λ̂∞

2− λ̂∞
ν2.

An agent without preferences over the state (i.e., α = 0) has no incentive to distort her mean

belief upward, and as a result, she eventually becomes dogmatic. After a finite number of periods,

such an agent holds — and sticks to — a point belief that, on average, lies between her prior mean

and the true state of the world (Part I), reflecting a form of “confirmation bias.” In contrast to

early models of confirmatory bias (e.g., Rabin and Schrag, 1999, Yariv, 2005), however, the bias

implied by our model is driven by considerations regarding the future rather than the past.6

As long as α < ᾱ, by Proposition 3, also an agent with preferences over the state becomes

dogmatic eventually. By Part II, the mean belief of such an agent diverges. To see why, notice

that, in every period t large enough, the agent’s original belief assigns probability 1 to some µt ∈ R.

Treating her original belief as truth, the agent sees little cost in choosing to be slightly more

optimistic. And since she derives anticipatory utility from being more optimistic, every period the

agent biases her mean belief up a bit more. As a result, her mean belief diverges over time.

6 Gottlieb (2014) makes a similar point for an agent who can recode “bad” signals as “good” signals. In contrast
to our result, his model suggests that confirmation bias is stronger for agents that care more about the state.
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Finally, the mean belief of an agent who cares enough about the state to stay forever uncertain,

converges to a limit distribution with full support (Part III). On average, such an agent is overopti-

mistic in the long-run (i.e., E
[
µ̂∞
]
> θ). At the same time, since she remains uncertain, she keeps

responding to every new signal, preventing her belief from concentrating on a single point.

4.3 Comparative Statics and Discussion of the Main Result

We center the discussion of our main result around a set of comparative statics that distinguish

our model from the benchmarks analyzed in Section 4.1. The long-run belief of a Bayesian agent,

in particular, is independent of (a) the incentives she faces (as modeled by α), (b) the precision

of signals she observes, and (c) the prior belief she starts out with. Our model, on the contrary,

predicts that the agent’s long-run belief depends on all three aspects of the environment.

We start by studying the role of incentives for long-run beliefs. Suppose that, for a reason

outside of our model, it becomes more important to the agent that the state is high. For example,

she may start a new job with a compensation scheme that is tightly linked to her productivity θ.

Our model can capture such a shift in incentives in reduced-form through an increase in α.

Corollary 2 (Incentives and Long-Run Beliefs). Fix any σ2
1 ∈ R≥0, ν

2 ∈ R>0, and γ ∈ R>0.

I. λ̂∞ monotonically increases in α, with λ̂∞ = 0 for any α < ᾱ and limα→∞ λ̂∞ = 1.

II. E[µ̂∞] is non-monotonic in α, with E[µ̂∞] = ∞ for any α < ᾱ and limα→∞ E[µ̂∞] = ∞.

III. For any α > ᾱ, any θ ∈ R, and any µ̂ ∈ R, we have P[(1− λ̂∞)µ̂+ λ̂∞st < θ] > 0.

The more important it is to the agent that the state is high, the more uncertain she remains in the

long run (Part I). We predict that this “insecurity” is paired with (extreme) average optimism as

well as huge and objectively unjustified swings in beliefs. More precisely, by Part II, the agent’s

average mean belief diverges as α → ∞. At the same time, by Part III, a single signal — e.g.,

a critical comment by a colleague — can turn the agent pessimistic, no matter how optimistic

she has become. This combination of predictions is consistent with evidence on fragile self-esteem

and imposter syndrome: while unrealistically positive self-views are common — in particular, in

domains people care about a lot, such as intelligence (Benôıt et al., 2015, Charness et al., 2018),
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beauty (Eil and Rao, 2011) or job performance (Malmendier and Tate, 2005, Hoffman and Burks,

2020) — many people also struggle with (sometimes unjustified) self doubts, resulting in insecurities

and temporal phases of pessimism (Ferrari and Thompson, 2006, Berglas, 2006).7
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Figure 3: Properties of limit beliefs for δ1 = ϕ1 = 1, δt = ϕt = 0 for all t ≥ 2, γ = 1, and σ2 = 1.

At the same time, our model predicts extreme overoptimism also in seemingly unimportant

domains of life. By Part II, for any α ≤ ᾱ, the agent’s mean belief diverges and, as illustrated

in Figure 3, if λ̂∞ is continuous in α, also limα↘ᾱ E[µ̂∞] = ∞. This form of extreme optimism is

markedly different, however, in that it (a) takes time (beliefs diverge over time at a rate proportional

to α), and (b) goes along with high confidence and (full) ignorance to evidence. Although extreme,

this prediction seems consistent with anecdotal evidence. As a concrete example, 47% of US tennis

amateurs above the age of 55 firmly believe that they could win a game against a professional

tennis player, which is delusional according to experts. And this is despite the fact that dying on

this hill has literally no (career) value for an amateur player above the age of 55.8

Next, we study the role of the signal structure. The precision of signals affects how certain the

agent chooses to be, which in turn affects her long-run mean belief. Fixing the agent’s original

belief, she chooses to be more uncertain the more precise the signals are, simply because she wants

7 Kőszegi et al. (2022) propose an equilibrium-based model of fragile self-esteem. The mechanism that generates
fragility in their paper is completely different, however. Kőszegi et al. (2022) model an agent who bases her self-esteem
on a selection of memories that come to mind. The memories that come to mind depend on how optimistic the agent
feels to start with, giving rise to a “personal equilibrium.” A multiplicity of such equilibria is what makes self-esteem
fragile. In contrast, the fragility in our model is driven by the fact that the agent remains genuinely insecure.

8 Going further, 12% of US tennis amateurs claim that they would sacrifice their marriage for a spot at a Grand
Slam tournament, and 20% of US tennis players would give up their entire life savings for the same opportunity. See
https://t1p.de/220pc and https://www.youtube.com/watch?v=tiEC1r8n60U for the survey results (both accessed
on March 31, 2024); or have a look at Todd Gallagher’s book on “How Andy Roddik Beat Me with a Frying Pan.”
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to put more weight on a more precise signal. But, all else equal, observing a more precise signal

makes the agent more certain, and as a result, she also chooses to be more certain going forward.

While impact of signal precision on the agent’s long-run belief is therefore ambiguous in general,

our next result identifies the effects of observing highly (im)precise signals.

Corollary 3 (Signal Precision and Long-Run Beliefs). Fix any σ2
1 ∈ R≥0, α ∈ R>0, and γ ∈ R>0.

I. There exists some ν̄2 > 0 such that, for any ν2 > ν̄2, λ̂∞ = 0 and E[µ̂∞] = ∞.

II. limν2→0 λ̂∞ = 1 and limν2→0 E[µ̂∞] = θ + αγΦ.

By Part I, if the signals are sufficiently imprecise, the agent becomes dogmatic eventually, because

the informational content of a signal does not make up for the anxiety from remaining uncertain.

At the other extreme, as signals become arbitrarily precise, the agent remains maximally uncertain

(Part II). Intuitively, in this case the anxiety from being uncertain vanishes: λ̂tν
2 → 0 as ν2 → 0.

Hence, by choosing λ̂t = 1, the agent can fully debias herself every period at approximately no cost.

Finally, we discuss the role of the agent’s prior for her long-run belief.

Corollary 4 (Prior and Long-Run Beliefs).

For any ν2 ∈ R>0, α ∈ R≥0, and γ ∈ R>0, λ̂∞ is independent of µ1 and weakly increases in σ2
1.

Because of the quadratic loss from inaccurate actions, the agent’s prior mean has no effect on

how uncertain she chooses to be. In combination with Proposition 4, this also implies that, for

any α > 0, the agent’s prior mean has no effect on her long-run mean belief. The agent’s prior

uncertainty, in contrast, may affect long-run uncertainty and as a result, also the long-run mean

belief. In general, the agent’s long-run uncertainty weakly increases in her prior uncertainty, and

as illustrated in Figure 4, σ2
1 determines whether the agent remains forever uncertain or not.

We conclude this section by studying in more detail the confirmation bias implied by our model.

As an illustration, consider an impartial scientist who wants to figure out the truth (i.e., α = 0).

Every period she runs a (thought) experiment that generates a signal st about the true state of the

world, and makes a testable prediction about the state. Consider, for example, a political scientist

studying polarization and predicting election outcomes or a climatologist making predictions about

changes in sea levels or precipitation patterns. The scientist’s predictions are scrutinized by the
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Figure 4: Chosen uncertainty for δ1 = ϕ1 = 1, δt = ϕt = 0, t ≥ 2, ν2 = 25, α = 6.8, and γ = 1.

scientific community or general public, and she incurs a quadratic loss (in reputation) from making

wrong predictions. Even though the scientist is impartial, she will not learn the truth. Instead,

because she is anxious to make wrong predictions, the scientist eventually develops a dogma and

remains biased toward her initial belief. Formally, the agent’s long-run mean belief increases in her

prior mean µ1, with this bias in her mean belief being larger the lower is her prior variance σ2
1.

5 Information Preferences

A central theme in work on motivated reasoning is preferences for information. Oster et al. (2013),

for example, find that people with a genetic predisposition for Huntington’s disease avoid getting

tested at the cost of making worse decisions in other domains of life. As already pointed out in

Spiegler (2008, 2019), a model of chosen beliefs, like ours, cannot explain “information avoidance”

(see Golman et al., 2017, for a survey) in this classical sense. In this section, we first re-state

Spiegler’s observation using our notation, and then study preferences over the timing of informa-

tion, deriving a novel form of “information delay.” Arguably, suboptimal behavior in high-stakes

decisions such as genetic testing are better understood as information delay than avoidance.

We start by re-stating Spiegler’s observation that a model like ours generates a (weak) preference
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for information. To avoid clutter, consider the version of our model with two periods, and again

normalize δ1 = ϕ1 = 1. We denote by U(σ2
1, ν

2;α, γ) the agent’s (ex-ante) value function, and

calculate the marginal value of information. Going beyond Spiegler (2008), we distinguish between

preferences for “immediate information,” which we conceptualize as a reduction in prior variance

σ2
1, and “future information,” which we conceptualize as a reduction in signal variance ν2.

Proposition 5 (The Marginal Value of Information).

I. ∂
∂σ2

1
U(σ2

1, ν
2;α, γ) < 0 and ∂

∂ν2
U(σ2

1, ν
2;α, γ) ≤ 0 almost everywhere.

II. ∂2

∂α∂σ2
1
U(σ2

1, ν
2;α, γ) ≥ 0 and ∂2

∂α∂ν2
U(σ2

1, ν
2;α, γ) ≤ 0 almost everywhere.

III. For any γ ∈ R>0, there exists an α̌ ∈ R>0, such that for all α > α̌, σ2
1 ∈ R≥0, and ν2 ∈ R>0,∣∣∣∣ ∂

∂σ2
1

U(σ2
1, ν

2;α, γ)

∣∣∣∣ < ∣∣∣∣ ∂

∂ν2
U(σ2

1, ν
2;α, γ)

∣∣∣∣ (a.e.).

By Part I, the agent values both immediate and future information, and would thus never avoid

extra information. By Part II, the value of immediate information (weakly) decreases in α. This is

because an agent with a higher α places a larger (potentially excessive) weight on the signal and

thus throws away a larger part of the information she receives before choosing her belief. For the

same reason, the value of future information (weakly) increases in α. Intuitively, an increase in

signal precision is more valuable the larger is the weight that the agent places on the signal. By

Part III, if α is large enough, the value of future information exceeds that of immediate information.

We use this last observation to show that our model can generate “information delay.” For that,

consider again the model with an infinite horizon, and suppose that the agent can once receive an

additional (unbiased, normal) signal with precision d/ν2 for some d ∈ N. This additional signal

could be, for example, a medical test while the “regular” signals are symptoms. In every period t,

the agent decides whether to receive the additional signal now — before choosing a new belief —

or delay the additional signal to a later period. Notice that a Bayesian agent would never delay the

signal, as delaying it would imply that the current decision is worse than it could be. In contrast, as

illustrated in Proposition 5, an erratic agent may prefer getting information in the future, because

she understands that otherwise she would throw away part of it. In the extreme, an erratic agent

may therefore delay the additional signal eternally.
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Proposition 6 (Eternally Delaying Information).

Let T = ∞, δ1 = ϕ1 = 1, and δt = ϕt = 0 for all t ≥ 2. For any σ2
1 ≤ ν2 and any γ ∈ R>0, there

exists some α̂ ∈ R>0, such that any agent with α > α̂ eternally delays the additional signal.

To understand the implications of Proposition 6, it is useful to contrast our model with Brun-

nermeier and Parker (2005), according to which the agent can choose her belief exactly once. Also

when choosing a belief exactly once, the agent may want to delay information, but she will receive

the signal the latest in t = 2. In this sense, information delay is not too costly in Brunnermeier

and Parker (2005). While our agent also always plans to receive the signal in the next period, she

does not follow through with this plan and instead delays the signal over and over again.9

6 Discussion of Modeling Assumptions

Belief utility Building on a sizable literature in economics (e.g., Jevons, 1905, Loewenstein, 1987,

Caplin and Leahy, 2001, Brunnermeier and Parker, 2005), and an even larger one in psychology,

we model an agent who derives anticipatory utility from future consumption. We take a particular

stand on how the agent imagines the future: she forms a coherent view of the future shaped by her

period-t chosen belief, placing a weight of γϕτ−t ≥ 0 on consumption τ periods into the future.

Deviating from Brunnermeier and Parker (2005), we model an agent who does not anticipate

future anticipatory utility.10 This is in the tradition of Jevons (1905), who thought of people as

maximizing current happiness. To understand the implications of this assumption, notice that every

signal, on average, drags down the agent’s overoptimistic belief. Hence, anticipated anticipatory

utility would be lower than today’s anticipatory utility, and anticipating anticipatory utility means

imagining the future using multiple, incoherent beliefs. By instead assuming that anticipatory

utility is based on a single, coherent belief, our model is closer to the cover version of “optimal

expectations” studied in Spiegler (2008, 2019) and other models of “wishful thinking” like Caplin

and Leahy (2019). And, as we show in the Online Appendix, this assumption has bite: assuming

9 Notice that Proposition 6 is not driven by the extreme discounting we assumed. As we show in the Online
Appendix, with less extreme discounting, delaying information becomes even more attractive because relative to
receiving information right now, it improves all future actions and thereby allows for a larger bias in the mean belief.

10 Moreover, we assume that the agent does not feel “memory utility” from remembering the past.
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that the agent anticipates anticipatory utility (in combination with our parametric assumptions

discussed below) necessarily implies a dogmatic long-run belief.

People may, of course, derive utility from beliefs for reasons other than anticipatory utility (as

modeled, for example, in Yariv, 2005, Kőszegi, 2006). For instance, people may want to hold certain

beliefs in order to not admit bad decisions in the past. While our framework in principle allows us

to study learning with such alternative forms of belief utility, we have not done so yet.

Cost of belief distortions Following Brunnermeier and Parker (2005), we introduce an implicit

cost of distorting one’s belief, which comes in the form of worse actions and lower consumption

utility. Other models, like Caplin and Leahy (2019), introduce an explicit cost of deviating from

one’s original belief. As we show in the Online Appendix, we can re-write our model in terms of such

an explicit cost. Our “cost function” is shaped by consumption utility, and given our functional

form assumptions, shares some properties with cost functions used in the literature.

Restrictions on consumption utility and chosen beliefs We assume linear-quadratic con-

sumption utility, and allow any normally distributed chosen belief. Given this functional form, the

agent has preferences over her mean belief and variance only. Choosing a normally distributed

belief is then indeed optimal, and our restriction to a normally distributed beliefs without loss.

It is worth highlighting a couple of advantages our setup has. First, Bayesian updating with a

normal prior and normally distributed signals is simple, which buys us tractability. Second, and

more importantly, mean and variance of a normal distribution are independent. In contrast to

existing work focusing on binary outcomes (Yariv, 2005, Oster et al., 2013), we can thus study how

optimism (i.e., distortions of the mean) and confidence (i.e., distortions of the variance) interact.

Finally, we deviate from Brunnermeier and Parker (2005) in that we allow the chosen belief to

have a wider support than the agent’s original belief (cf Assumption 1(iv) in their paper). As shown

in Corollary 1, their assumption is with loss of generality: the original belief can have a narrower

support than the chosen one (namely, {µ} instead of R). If we instead adopted Brunnermeier and

Parker’s assumption, we would effectively assume that a dogmatic agent cannot choose her belief.

Under this alternative assumption, the mean belief of a dogmatic agent would not diverge. With

22



this one exception, however, all of our results continue to hold.11

Naivete We impose three forms of naivete, two of which reflect standard assumptions in the

literature. First, we assume that the agent is naive in a “backward-looking” sense: in every period,

she treats her original belief as truth, not correcting for the fact that she has (partly) chosen it

in the past. Second, and relatedly, we assume that the agent does not make inferences from how

her imagined and realized utility differ. By forcing the agent’s beliefs to satisfy the law of iterated

expectations (Part (iii) of their Assumption 1), Brunnermeier and Parker (2005) implicitly make

the same assumptions. As a natural first step, we maintain both assumptions. Allowing the agent

to question her original belief — potentially based on the divergence of imagined and realized

utility12 — raises interesting theoretical issues that seem orthogonal to our main interests.

Third, we assume that the agent is naive in a “forward-looking” sense: in every period, she

thinks that this is the one and only time she chooses her belief. Intuitively, for the agent to

feel elated through the choice of beliefs, she must take her chosen belief seriously, which seems

impossible when she already anticipates re-choosing her belief in the future. Brunnermeier and

Parker (2005) circumvent this problem by allowing the agent to choose her belief exactly once.

Hence, by construction, the agent is correctly specified despite taking her chosen belief seriously.

By doing so, Brunnermeier and Parker (2005) make the highly unrealistic assumption that there

is a single special point in time at which a person chooses her belief. This implies, as we argue

in Section 4, that almost any belief distortion à la Brunnermeier and Parker (2005) washes out

in the long run. We, in contrast, want to take seriously the idea that people can re-choose their

beliefs, and assume forward-looking naivete to make the agent take her chosen beliefs seriously.

Yariv (2005) studies the implications of a similar form of naivete in a different setting.

Trigger An important shortcoming of our model is that we lack a theory of what triggers the

choice of new beliefs. The current model ties the choice of beliefs to receiving a signal. This

assumption is not grounded in psychological evidence, however. Still, as long as the agent keeps

11 The agent — even if aware that becoming dogmatic prevents her from re-choosing her belief in the future —
would not choose a different belief because she anyways thinks that this is the one and only time she does so.

12 Notice, however, that this inference is complicated through anticipatory utility masking low consumption utility.
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re-choosing her belief on a regular basis, all our results remain to hold. Formally, suppose that the

agent re-chooses her belief every d+1 ∈ N periods, so that she observes d signals in-between. Since

our agent updates according to Bayes’ rule, observing d normally distributed signals with precision

1/ν2 is equivalent to observing a single signal with precision d/ν2. Hence, a more infrequent, but

regular choice of beliefs is equivalent to making the signals more precise, and because we derive

results for an arbitrary precision of the signals, our model subsumes this case. In other settings,

however, the exact trigger might be important, so the question calls for future research.

Distorting prior vs. signal structure Following Brunnermeier and Parker (2005), we assume

that the agent chooses her prior belief and then updates via Bayes’ rule taking the chosen belief

and the signal structure as given. This identifies the beliefs that the agent wants to hold over

time, ignoring potential constraints stemming from the psychological mechanism of forming such

beliefs. A natural alternative — as in Rabin and Schrag (1999) or Bénabou and Tirole (2002) —

is to assume that the agent takes her prior as given and manipulates her belief about the signal

structure. As we show in the Online Appendix, if the agent chooses her perception of the signal

structure in order to maximize anticipatory utility (see also Gottlieb, 2014), such an alternative

model yields testable predictions that differ from those of our model.13

7 Concluding Remarks

We conclude by discussing a question orthogonal to the analysis so far: (when) does the agent

“wake up” and question her original belief? A dogmatic agent becomes increasingly optimistic over

time, and as a result, the observed signals become increasingly unlikely under her original belief.

This suggests that she may question her (extreme) dogmatic belief eventually. At the same time,

because dogmas are limited to domains the agent cares about fairly little, dogmatic beliefs get

detached from reality slowly. Dogmas may, therefore, stick for a prolonged period of time.

Persistent insecurity seems even more robust to introspection in the sense that the next signal

is less unrealistic under the agent’s original belief. First, an insecure agent is less overoptimistic in

13 Modeling an agent who optimally chooses her belief about the signal structure upon observing the signal might
provide a microfoundation for some quasi Bayesian models used in the literature (e.g., Möbius et al., 2022).
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the long run, which makes an unbiased signal less surprising. Second, the agent remains uncertain

in the long run, which again makes an unbiased, on average negative, signal less surprising. This

suggests that insecure people might never come to the point of questioning their own insecurity.

A formal model of waking up is beyond the scope of the present paper, however. Such a model

would require us to take a stand on what the agent does upon “rejecting” her original belief.

Existing work (Gagnon-Bartsch et al., 2023, Ba, 2024) has studied waking up in the presence of an

exogenously given, natural alternative that is (infinitely) more likely in the light of the data. While

plausible in the context of a (misspecified) Bayesian model, it is not obvious how to combine this

idea with a model of chosen beliefs. We therefore leave this question to future research.

Appendix: Proofs

Proof of Proposition 1. The proof is given in the text.

Proof of Proposition 2. Combing the first and third term in (5), the agent’s objective simplifies to

α2γ2

1 + (1− λ̂)2
− (λ− λ̂)2(σ2 + ν2)− γλ̂ν2. (6)

First, we show that for any γ ≤ 2, the objective function in Eq. (6) is single-peaked in λ̂. The first

derivative of Eq. (6) with respect to λ̂ is

α2γ2
1− λ̂

(1 + (1− λ̂)2)2
+ (λ− λ̂)(σ2 + ν2)− γ

2
ν2, (FD)

and its second derivative with respect to λ̂ is

α2γ2
3λ̂2 − 6λ̂+ 2

(1 + (1− λ̂)2)3
− (σ2 + ν2). (SD)

The second derivative (SD) is decreasing in λ̂, it equals

α2γ2

4
− (σ2 + ν2)

at λ̂ = 0, and it is negative for any λ̂ > 3−
√
3

3 ≈ 0.42. This implies that Eq. (6) is either concave

or first convex and then concave. Because the first derivative is negative for sufficiently large λ̂, it

25



follows that Eq. (6) is single-peaked, with the maximizer solving the first-order condition, whenever

FD|λ̂=0 > 0. Finally, suppose the first derivative is non-positive at λ̂ = 0, which is equivalent to

α2γ2

4
+ σ2 − γ

2
ν2 ≤ 0.

We then conclude that, for any γ ≤ 2 + 4σ2

ν2
, FD|λ̂=0 ≤ 0 implies SD|λ̂=0 ≤ 0. Hence, whenever

FD|λ̂=0 ≤ 0, Eq. (6) is single-peaked at λ̂ = 0.

We now conclude that, for any γ ≤ 2, the agent is dogmatic (i.e., λ̂ = 0) if and only if

FD|λ̂=0 ≤ 0 or, equivalently, γ ≥ 2
σ2

ν2
and α2 ≤ 2

ν2

γ
− 4

σ2

γ2
.

Moreover, the agent is erratic (i.e., λ̂ > λ) if and only if

FD|λ̂=λ > 0 or, equivalently, α2 >
1

γ

ν2

2

(1 + (1− λ)2)2

1− λ
.

Otherwise the agent is (weakly) narrow-minded (i.e., 0 < λ̂ ≤ λ). This completes the proof.

Proof of Corollary 1. Because σ2 = 0 implies λ = 0, it follows from Part II of Proposition 2.

Proof of Lemma 1. Define wτ
t (λ̂t) :=

λ̂t(τ−t)

1+(τ−(t+1))λ̂t
. As we show in the Online Appendix, the agent

chooses b̂t and λ̂t as to maximize

−1

2
b̂2t −

1

2

∞∑
τ=t+1

δτ−t

((
wτ
t (λt)− wτ

t (λ̂t)
)2(

σ2
t +

ν2

τ − t

)
+
(
1− wτ

t (λ̂t)
)2
b̂2t

)

+ γ

∞∑
τ=t+1

ϕτ−t

(
αb̂t −

1

2
wτ
t (λ̂t)

ν2

τ − t

)
.

(7)

We start by solving for the optimal b̂t as a function of λ̂t. Fixing any λ̂t ∈ [0, 1], the above

objective function is strictly concave in b̂t. Hence, the optimal b̂t satisfies the first-order condition

−b̂t

(
1 +

∞∑
τ=t+1

δτ−t

(
1− wτ

t (λ̂t)
)2)

+ γα

∞∑
τ=t+1

ϕτ−t︸ ︷︷ ︸
= Φ

= 0,

which in turn implies

b̂t =
αγΦ

1 +
∑∞

τ=t+1 δτ−t

(
1− wτ

t (λ̂t)
)2 =

αγΦ

1 +
∑∞

τ=1 δτ

(
1−λ̂t

1+(τ−1)λ̂t

)2 . (8)
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Plugging (8) into (7), we conclude that the agent chooses λ̂t ∈ [0, 1] as to maximize

f(λ̂t, λt, α) :=
1

2

α2γ2Φ2

1 +
∑∞

τ=t+1 δτ−t

(
1− wτ

t (λ̂t)
)2 − γ

2

∞∑
τ=t+1

ϕτ−tw
τ
t (λ̂t)

ν2

τ − t

− 1

2

∞∑
τ=t+1

δτ−t

(
wτ
t (λt)− wτ

t (λ̂t)
)2(

σ2
t +

ν2

τ − t

)
.

Notice that

∂

∂λ̂t

wτ
t (λ̂t) =

(τ − t)(
1 + (τ − (t+ 1))λ̂t

)2 ,
and because σ2

t/ν2 = λt/(1−λt),

(
wτ
t (λt)− wτ

t (λ̂t)
)(

σ2
t +

ν2

τ − t

)
=

(λt − λ̂t)(τ − t)(
1 + (τ − (t+ 1))λt

)(
1 + (τ − (t+ 1))λ̂t

) ν2

τ − t

1 + (τ − (t+ 1))λt

1− λt

= ν2
λt − λ̂t

1− λt

1

1 + (τ − (t+ 1))λ̂t

.

With this, we can re-write the first partial derivative of f with respect to λ̂t as follows

∂f

∂λ̂t

= α2γ2Φ2

∑∞
τ=t+1 δτ−t(τ − t) (1−λ̂t)(

1+(τ−(t+1))λ̂t

)3(
1 +

∑∞
τ=t+1 δτ−t

(
1−λ̂t

1+(τ−(t+1))λ̂t

)2)2 − γ

2
ν2

∞∑
τ=t+1

ϕτ−t
1(

1 + (τ − (t+ 1))λ̂t

)2
+ ν2

∞∑
τ=t+1

δτ−t
(τ − t)(

1 + (τ − (t+ 1))λ̂t

)3 λt − λ̂t

1− λt
.

We conclude by making two observations on λ̂t. First, because f is continuous in λ̂t, and

because λ̂t is chosen from the closed interval [0, 1], an optimal λ̂t exists. Second, for any λt < 1,

∂f

∂λ̂t

∣∣
λ̂t=1

< 0. Hence, for any λt < 1, the optimal weight on the next signal satisfies λ̂t < 1.

Proof of Lemma 2. The result follows immediately when (iteratively) applying the updating rule

specified in Section 2 and using the fact that E[st] = θ and Var(st) = ν2 for all t.

Proof of Lemma 3. (Throughout, we will fix ν2 ∈ R>0. Acknowledging a slight imprecision, when

taking a partial derivative with respect to λt, we refer to changes in λt for a fixed ν2.)
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Part I. We have to show that the sequence (λ̂t)t∈N is monotone. Using the same notation as in

the proof of Lemma 1, we observe that, for any λ̂t < 1,

∂2f

∂λt∂λ̂t

= ν2
∞∑

τ=t+1

δτ−t
(τ − t)(

1 + (τ − (t+ 1))λ̂t

)3 ∂

∂λt

(
λt − λ̂t

1− λt

)

= ν2
∞∑

τ=t+1

δτ−t
(τ − t)(

1 + (τ − (t+ 1))λ̂t

)3 1− λ̂t

(1− λt)2
> 0.

Hence, f satisfies strictly increasing differences in (λ̂t, λt): i.e., for any λ̂t ≥ λ̂′
t and λt ≥ λ′

t,

f(λ̂t, λt, α)− f(λ̂′
t, λt, α) ≥ f(λ̂t, λ

′
t, α)− f(λ̂′

t, λ
′
t, α),

holding with a strict inequality if λ̂t > λ̂′
t and λt > λ′

t. By Theorem 10.6 in Sundaram (1996),

therefore, λ̂t monotonically increases in λt for any t ≥ 1. By assumption, for any t ≥ 2, we have

λt =
λ̂t−1

1+λ̂t−1
, which increases in λ̂t−1. Hence, for any t ≥ 2, λ̂t monotonically increases in λ̂t−1.

To verify monotonicity, we distinguish two cases. First, suppose that λ1 >
λ̂1

1+λ̂1
= λ2. Because

λ̂t is increasing in λt, we have λ̂2 < λ̂1. And, because λ̂t monotonically increases in λ̂t−1, we further

conclude that λ̂t < λ̂t−1 for all t ≥ 3. Second, suppose that λ1 ≤ λ̂1

1+λ̂1
= λ2. An argument similar

to that in the first case implies λ̂t ≥ λ̂t−1. Hence, the sequence (λ̂t)t∈N is monotone.

The sequence (λ̂t)t∈N is not only monotone, but because λ̂t ∈ [0, 1], it is also bounded. Hence, by

the monotone convergence theorem, the sequence (λ̂t)t∈N converges to some λ̂∞ ∈ [0, 1]. It remains

to be shown that λ̂∞ < 1. Notice that λ∞ = λ̂∞
λ̂∞+1

and that λ̂∞ solves ∂f

∂λ̂t

∣∣
λ̂t=λ̂∞,λt=λ∞

= 0. Now,

for the sake of a contradiction, assume that λ̂∞ = 1 and thus λ∞ = 1
2 . Then,

∂f

∂λ̂t

∣∣∣∣
λ̂t=λ̂∞,λt=λ∞

= −γ

2
ν2

∞∑
τ=t+1

ϕτ−t
1

(τ − t)2
− ν2

∞∑
τ=t+1

δτ−t
1

(τ − t)2
< 0;

a contradiction. Hence, (λ̂t)t∈N converges to some λ̂∞ ∈ [0, 1).

Part II. By Lemma 1, we have λ̂1 < 1. Hence, if ν2 ≤ σ2
1, then we also have σ2

2 = λ̂1ν
2 < σ2

1

and λ2 =
σ2
2

σ2
2+ν2

<
σ2
1

σ2
1+ν2

= λ1. Recall from the proof of Part I that λ̂t monotonically increases in

λt. We thus conclude that λ̂2 < λ̂1, and the claim follows from Part I.

Part III. First, we show that if α = 0, then the sequence (λ̂t)t∈N is decreasing. We observe that

∂f

∂λ̂t

∣∣∣∣
α=0

= −γ

2
ν2

∞∑
τ=t+1

ϕτ−t
1(

1 + (τ − (t+ 1))λ̂t

)2 + ν2
∞∑

τ=t+1

δτ−t
(τ − t)(

1 + (τ − (t+ 1))λ̂t

)3 λt − λ̂t

1− λt
.
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is strictly negative for any λ̂t ≥ λt. Hence, if α = 0, then λ̂t < λt for any t ≥ 1. In particular,

σ2
2 = λ̂1ν

2 < λ1ν
2 = σ2

1(1− λ1) < σ2
1 and thus λ2 < λ1. Because λ̂t monotonically increases in λt,

we thus have λ̂2 < λ̂1. The claim thus follows from Part I.

Second, fixing λt ∈ [0, 1), we show that λ̂t monotonically increases in α. For any λ̂t < 1,

∂f

∂α∂λ̂t

= 2αγ2Φ2

∑∞
τ=t+1 δτ−t(τ − t) (1−λ̂t)(

1+(τ−(t+1))λ̂t

)3(
1 +

∑∞
τ=t+1 δτ−t

(
1−λ̂t

1+(τ−(t+1))λ̂t

)2)2 > 0.

As argued above, the claim then immediately follows from Theorem 10.6 in Sundaram (1996).

Third, we show that there exists some α ∈ R, such that for any α > α, (λ̂t)t∈N is increasing.

Notice that, for any fixed λ̂t < 1, we have limα→∞
∂f

∂λ̂t
= ∞. This implies limα→∞ λ̂t = 1. Now fix

an initial variance σ2
1 < ν2, and recall that λ̂1 monotonically increases in α. Hence, there exists

some α ∈ R, such that for any α > α, we have σ2
2 = λ̂1ν

2 > σ2
1, which in turn implies λ2 > λ1.

Because λ̂t monotonically increases in λt, we thus have λ̂2 > λ̂1. The claim follows from Part I.

Proof of Proposition 3. Part I. Fix γ,Φ,∆,Ω ∈ R>0. For the sake of a contradiction, suppose that

λ̂t > 0 for any t ∈ N with limt→∞ λ̂t = 0. By Lemma 3, (λ̂t)t∈N must be decreasing.

First, suppose that α2 < (1+∆)2

Ω
ν2

2γΦ . By our assumption towards a contradiction, we can find

some t′ ∈ N such that for any t ≥ t′,

α2 <
(1 + ∆)2

Ω

ν2

2γΦ
− λ̂t−1

ν2

γ2Φ2
(1 + ∆)2.

For any t ≥ t′, we have

∂f

∂λ̂t

∣∣∣∣
λ̂t=0

=
Ω

(1 +∆)2
α2γ2Φ2 − γ

2
ν2Φ+ ν2

λt

1− λt
Ω

=
Ω

(1 +∆)2
α2γ2Φ2 − γ

2
ν2Φ+ ν2λ̂t−1Ω

< 0.

Moreover, because ∂f

∂λ̂t
is continuous in λ̂t, we can find some ϵt > 0, such that ∂f

∂λ̂t
< 0 for any

λ̂t ∈ [0, ϵt). Hence, λ̂t = 0 or λ̂t ≥ ϵt. Because (i) ∂2f

∂λt∂λ̂t
> 0 for any λ̂t < 1, (ii) λt+1 = λ̂t

λ̂t+1
is

increasing in λ̂t, and (iii) (λ̂t)t∈N is decreasing, the sequence (ϵt)t≥t′ must be increasing. By our
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assumption towards a contradiction, we can thus find a period t′′ ≥ t′ such that λ̂t′′−1 < ϵt′ ≤ ϵt′′ .

Hence, for any t ≥ t′′, the agent chooses λ̂t = 0; a contradiction.

Second, suppose that α2 > (1+∆)2

Ω
ν2

2γΦ . Then, for any t, we have

∂f

∂λ̂t

∣∣∣∣
λ̂t=0

=
Ω

(1 +∆)2
α2γ2Φ2 − γ

2
ν2Φ+ ν2

λt

1− λt
Ω > 0.

Because ∂f

∂λ̂t
is continuous in λ̂t, we can find some ϵt > 0, such that ∂f

∂λ̂t
> 0 for any λ̂t ∈ [0, ϵt).

Hence, it has to be true that λ̂t ≥ ϵt. Because (i) ∂2f

∂λt∂λ̂t
> 0 for any λ̂t < 1, (ii) λt+1 = λ̂t

λ̂t+1
is

increasing in λ̂t, and (iii) (λ̂t)t∈N is decreasing, the sequence (ϵt)t∈N must be decreasing. Still, since

α2 > (1+∆)2

Ω
ν2

2γΦ , limt→∞ ϵt = ϵ > 0. This implies that limt→∞ λ̂t ≥ ϵ > 0; a contradiction.

Part II. We first show that if α = 0, the agent develops a dogma. As we have argued in the

proof of Part III of Lemma 3, if α = 0, then λ̂t < λt for any t ≥ 1. We bound λ̂t from above by

the weight λb
t that a fully Bayesian agent starting out with the same prior belief, N (µ1, σ

2
1), would

put on signal st. Formally, we show that, for any t, we have λ̂t < λb
t .

We prove this claim by induction (over t). In period 1, we have λ̂1 < λ1 = λb
1. Now assume

that λ̂t < λb
t holds. We have to show that also λ̂t+1 < λb

t+1. Since λ̂t < λt for any t ≥ 1, we obtain

λ̂t+1 < λt+1 =
λ̂t

λ̂t + 1
<

λb
t

λb
t + 1

= λb
t+1,

where the second inequality follows from the induction hypothesis.

Because λ̂t < λb
t , we further conclude that

λ̂t <
λ1

1 + (t− 1)λ1
−→ 0 as t → ∞.

By Part I, therefore, there exists some t′ ∈ N, such that for any t ≥ t′, we have λ̂t = 0.

Second, by the proof of Part I, an agent with α2 > (1+∆)2

Ω
ν2

2γΦ does not develop a dogma.

Third, we show that, for a given λ1, the weight λ̂t monotonically increases in α. As we have

argued in the proof of Lemma 3, fixing λt, the weight λ̂t indeed monotonically increases in α.

This implies that λ̂1 monotonically increases in α. Next, we prove our claim by induction (over t).

Compare α′ and α′′ > α′. By the induction hypothesis, we have λ̂t(α
′′) > λ̂t(α

′), which in turn

implies that λ′′ := λt+1(α
′′) > λt+1(α

′) =: λ′. Again, as we have argued in the proof of Lemma 3,

fixing α, the weight λ̂t increases in λt. Hence, we have λ̂t+1(α
′′, λ′′) ≥ λ̂t+1(α

′′, λ′) ≥ λ̂t+1(α
′, λ′).
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Fourth, we argue that this monotonicity is preserved in the limit. Consider α′ and α′′ > α′. Let

(λ̂′
t)t∈N and (λ̂′′

t )t∈N be the corresponding sequences, with limit weights λ̂′
∞ and λ̂′′

∞, respectively.

Define dt = λ̂′′
t − λ̂′

t ≥ 0, with a limit d∞ = λ̂′′
∞ − λ̂′

∞. For the sake of a contradiction, suppose

d∞ < 0, and set ϵ = −d∞/2. Because (dt)t∈N converges, there exists some t∗, so that for any t ≥ t∗,

|dt − d∞| < ϵ or, equivalently, d∞ − ϵ < dt < d∞ + ϵ =
d∞
2

< 0;

a contradiction. Hence, d∞ ≥ 0 and thus λ̂′′
∞ ≥ λ̂′

∞. In sum, we conclude that, there exists some

ᾱ ∈ R>0, such that the agent develops a dogma if and only if α ≤ ᾱ.

Proof of Proposition 4. Parts I and II. By Proposition 3, if α < ᾱ, the agent develops a dogma.

Once the agent has developed a dogma, she does no longer react to the signals. Still, since she treats

µt as truth, in every period t large enough, she increases her mean belief by αγΦ
1+∆ . In particular, if

α = 0, the agent does not bias her mean belief. Part I then follows directly from Lemma 2 with

ωE :=

τ∗−1∑
t=1

λ̂t

τ∗−1∏
ℓ=t+1

(1− λ̂ℓ) and ωV :=

τ∗−1∑
t=1

λ̂2
t

τ∗−1∏
ℓ=t+1

(1− λ̂ℓ)
2,

where τ∗ ∈ N is the period in which the agent chooses to be dogmatic.

Part III. Let α > ᾱ. By Lemma 2, the agent’s mean belief in period τ is given by

µ̂τ = µ1

τ−1∏
t=1

(1− λ̂t) +
τ∑

t=1

b̂t

τ−1∏
ℓ=t

(1− λ̂ℓ) +
τ−1∑
t=1

stλ̂t

τ−1∏
ℓ=t+1

(1− λ̂ℓ). (9)

In the following, we proceed in three steps. First, we characterize the agent’s expected long-run

mean belief. In a second step, we derive the variance of the agent’s long-run mean belief. Finally,

we argue that the agent’s long-run mean belief, µ∞, is normally distributed.

1. Step. We first determine the agent’s expected long-run mean belief. When taking the

expectation over the sequence of signals in Eq. (9), we obtain

E
[
µ̂τ

]
= µ1

τ−1∏
t=1

(1− λ̂t) +

τ∑
t=1

b̂t

τ−1∏
ℓ=t

(1− λ̂ℓ) + θ

τ−1∑
t=1

λ̂t

τ−1∏
ℓ=t+1

(1− λ̂ℓ). (10)

We study the limit behavior of the three terms on the right-hand side in Eq. (10) separately.
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Lemma 4 (Limit Weight on the Prior).

lim
τ→∞

µ1

τ−1∏
t=1

(1− λ̂t) = 0.

Proof. Let λ := inft∈N λ̂t, and recall that, by the preliminaries, λ > 0. This implies that

|µ1|
τ−1∏
t=1

(1− λ̂t) < |µ1|(1− λ)τ−1 −→ 0 as τ → ∞,

which in turn yields the claim.

Lemma 5 (Limit Bias).

lim
τ→∞

τ∑
t=1

b̂t

τ−1∏
ℓ=t

(1− λ̂ℓ) =
b̂∞

λ̂∞
.

Proof. For the sake of a contradiction, suppose that there exists some ϵ > 0 such that∣∣∣∣∣ b̂∞λ̂∞
− lim

τ→∞

τ∑
t=1

b̂t

τ−1∏
ℓ=t

(1− λ̂ℓ)

∣∣∣∣∣ > ϵ.

Because limt→∞ λ̂t = λ̂∞ and limt→∞ b̂t = b̂∞ exist, we can find some τ ′, such that for all τ > τ ′,∣∣∣∣∣
τ∑

t=τ ′+1

b̂t

τ−1∏
ℓ=t

(1− λ̂ℓ)−
τ∑

t=τ ′+1

b̂∞

τ−1∏
ℓ=t

(1− λ̂∞)

∣∣∣∣∣ < ϵ. (11)

Now fix such an τ ′ and choose τ > τ ′ + 1. Then,

τ∑
t=1

b̂t

τ−1∏
ℓ=t

(1− λ̂ℓ) =
τ ′∑
t=1

b̂t

τ−1∏
ℓ=t

(1− λ̂ℓ) +
τ∑

t=τ ′+1

b̂∞

τ−1∏
ℓ=t

(1− λ̂∞)

+

τ∑
t=τ ′+1

b̂t

τ−1∏
ℓ=t

(1− λ̂ℓ)−
τ∑

t=τ ′+1

b̂∞

τ−1∏
ℓ=t

(1− λ̂∞).

(12)

Again using the fact that λ > 0, we observe that

τ ′∑
t=1

b̂t

τ−1∏
ℓ=t

(1− λ̂ℓ) =

τ ′∑
t=1

b̂t

τ ′−1∏
ℓ=t

(1− λ̂ℓ)

τ−1∏
ℓ=τ ′

(1− λ̂ℓ)

< (1− λ)τ−τ ′
τ ′∑
t=1

b̂t

τ ′−1∏
ℓ=t

(1− λ̂ℓ) −→ 0 as τ → ∞.
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Moreover, we have

τ∑
t=τ ′+1

b̂∞

τ−1∏
ℓ=t

(1− λ̂∞) = b̂∞

τ∑
t=τ ′+1

(1− λ̂∞)τ−t

= b̂∞

τ−(τ ′+1)∑
ℓ=0

(1− λ̂∞)ℓ −→ b̂∞

λ̂∞
as τ → ∞.

Combining these two observations with Eq. (12), we conclude that

lim
τ→∞

τ∑
t=1

b̂t

τ−1∏
ℓ=t

(1− λ̂ℓ) =
b̂∞

λ̂∞
+ lim

τ→∞

{
τ∑

t=τ ′+1

b̂t

τ−1∏
ℓ=t

(1− λ̂ℓ)−
τ∑

t=τ ′+1

b̂∞

τ−1∏
ℓ=t

(1− λ̂∞)

}
.

Using (11), it therefore follows ∣∣∣∣∣ b̂∞λ̂∞
− lim

τ→∞

τ∑
t=1

b̂t

τ−1∏
ℓ=t

(1− λ̂ℓ)

∣∣∣∣∣ < ϵ;

a contradiction.

Lemma 6 (Limit Weight on the Truth).

τ−1∑
t=1

λ̂t

τ−1∏
ℓ=t+1

(1− λ̂ℓ) = 1.

Proof. For the sake of a contradiction, suppose that there exists some ϵ > 0 such that∣∣∣∣∣1− lim
τ→∞

τ−1∑
t=1

λ̂t

τ−1∏
ℓ=t+1

(1− λ̂ℓ)

∣∣∣∣∣ > ϵ.

Because limt→∞ λ̂t = λ̂∞ and limt→∞ b̂t = b̂∞ exist, we can find some τ ′, such that for all τ > τ ′,∣∣∣∣∣
τ∑

t=τ ′+1

λ̂t

τ−1∏
ℓ=t+1

(1− λ̂ℓ)−
τ∑

t=τ ′+1

λ̂∞

τ−1∏
ℓ=t+1

(1− λ̂∞)

∣∣∣∣∣ < ϵ. (13)

Now fix such a τ ′ and choose τ > τ ′ + 2. Then,

τ−1∑
t=1

λ̂t

τ−1∏
ℓ=t+1

(1− λ̂ℓ) =
τ ′∑
t=1

λ̂t

τ−1∏
ℓ=t+1

(1− λ̂ℓ) +
τ−1∑

t=τ ′+1

λ̂∞

τ−1∏
ℓ=t+1

(1− λ̂∞)

+
τ−1∑

t=τ ′+1

λ̂t

τ−1∏
ℓ=t+1

(1− λ̂ℓ)−
τ−1∑

t=τ ′+1

λ̂∞

τ−1∏
ℓ=t+1

(1− λ̂∞).

(14)
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Again using the fact that λ > 0, we observe that

τ ′∑
t=1

λ̂t

τ−1∏
ℓ=t+1

(1− λ̂ℓ) =

τ ′∑
t=1

λ̂t

τ ′−1∏
ℓ=t+1

(1− λ̂ℓ)

τ−1∏
ℓ=τ ′

(1− λ̂ℓ)

< (1− λ)τ−τ ′
τ ′∑
t=1

λ̂t

τ ′−1∏
ℓ=t+1

(1− λ̂ℓ) −→ 0 as τ → ∞.

Moreover, we have

τ−1∑
t=τ ′+1

λ̂∞

τ−1∏
ℓ=t+1

(1− λ̂∞) = λ̂∞

τ−1∑
t=τ ′+1

(1− λ̂∞)τ−(t+1)

= λ̂∞

τ−(τ ′+2)∑
ℓ=0

(1− λ̂∞)ℓ −→ 1 as τ → ∞.

Combining these two observations with Eq. (14), we conclude that

lim
τ→∞

τ−1∑
t=1

λ̂t

τ−1∏
ℓ=t+1

(1− λ̂ℓ) = 1 + lim
τ→∞

{
τ−1∑

t=τ ′+1

λ̂t

τ−1∏
ℓ=t+1

(1− λ̂ℓ)−
τ−1∑

t=τ ′+1

λ̂∞

τ−1∏
ℓ=t+1

(1− λ̂∞)

}
.

Using (13), it therefore follows ∣∣∣∣∣1− lim
τ→∞

τ−1∑
t=1

λ̂t

τ−1∏
ℓ=t+1

(1− λ̂ℓ)

∣∣∣∣∣ < ϵ;

a contradiction.

Combining Lemma 4, 5, and 6, we obtain

lim
τ→∞

E
[
µτ

]
= θ +

b̂∞

λ̂∞
.

2. Step. We next derive the variance of the agent’s long-run mean belief. By Eq. (9), we have

Var
(
µ̂τ

)
= ν2

τ−1∑
t=1

λ̂2
t

τ−1∏
ℓ=t+1

(1− λ̂ℓ)
2.

By the exact same arguments as in the proof of Lemma 6, we have

lim
τ→∞

τ−1∑
t=1

λ̂2
t

τ−1∏
ℓ=t+1

(1− λ̂ℓ)
2 = λ̂2

∞
1

1− (1− λ̂∞)2
=

λ̂∞

2− λ̂∞
.
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Hence, we have

lim
τ→∞

Var
(
µ̂τ

)
= ν2

λ̂∞

2− λ̂∞
.

3. Step. We finally argue that the agent’s long-run mean belief is normally distributed. Taking

the limit of Eq. (9), we have

µ̂∞ − b̂∞

λ̂∞
=

∞∑
t=1

stλ̂t

∞∏
ℓ=t+1

(1− λ̂ℓ)︸ ︷︷ ︸
=: s̃t

,

which is an infinite sum of independent and normally distributed random variables

s̃t ∼ N

(
θλ̂t

∞∏
ℓ=t+1

(1− λ̂ℓ), ν
2λ̂2

t

∞∏
ℓ=t+1

(1− λ̂ℓ)
2

)
.

As we have seen in the first two steps above, both

∞∑
t=1

E
[
s̃t
]
= θ and

∞∑
t=1

Var
(
s̃t
)
= ν2

λ̂∞

2− λ̂∞

exist. Hence, because the random variables {s̃t}t∈N are independently and normally distributed,

the characteristic function14 of
∑τ

t=1 s̃t converges pointwise to

exp

(
− t2

2

∞∑
t=1

Var
(
s̃t
)
+ it

∞∑
t=1

E
[
s̃t
])

, as τ → ∞.

By Lévy’s convergence theorem, therefore,
∑τ

t=1 s̃t converges in distribution to

N

(
θ, ν2

λ̂∞

2− λ̂∞

)
, as τ → ∞,

and, as a consequence, µ∞ converges in distribution to

N

(
θ +

b̂∞

λ̂∞
, ν2

λ̂∞

2− λ̂∞

)
, as τ → ∞.

This completes the proof.

14See, for example, https://en.wikipedia.org/wiki/Characteristic_function_(probability_theory) for a

definition and properties of the characteristic function (accessed on February 29, 2024).
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Proof of Corollary 2. Part I. As we have argued in the proof of Proposition 4, λ̂∞ monotonically

increases in α. Next, for the sake of a contradiction, suppose limα→∞ λ̂∞ < 1. Because λ̂∞ > 0,

0 =
∂f

∂λ̂t

∣∣∣∣
λ̂t=λ̂∞,λt=λ̂∞/(1+λ̂∞)

= α2γ2Φ2

∑∞
τ=t+1 δτ−t(τ − t) (1−λ̂∞)(

1+(τ−(t+1))λ̂∞
)3(

1 +
∑∞

τ=t+1 δτ−t

(
1−λ̂∞

1+(τ−(t+1))λ̂∞

)2)2 − γ

2
ν2

∞∑
τ=t+1

ϕτ−t
1(

1 + (τ − (t+ 1))λ̂∞
)2

− λ̂2
∞ν2

∞∑
τ=t+1

δτ−t
(τ − t)(

1 + (τ − (t+ 1))λ̂∞
)3 ,

with f being been defined as in the proof of Lemma 1. Because the second term is bounded from

below by −γ
2ν

2Φ > −∞ and the third term is bounded from below by −ν2Ω > −∞, we have

∑∞
τ=t+1 δτ−t(τ − t) (1−λ̂∞)(

1+(τ−(t+1))λ̂∞
)3(

1 +
∑∞

τ=t+1 δτ−t

(
1−λ̂∞

1+(τ−(t+1))λ̂∞

)2)2 −→ 0 as α → ∞,

for otherwise ∂f

∂λ̂t

∣∣
λ̂t=λ̂∞,λt=λ̂∞/(1+λ̂∞)

→ ∞ as α → ∞. Hence, λ̂∞ → 1 as α → ∞; a contradiction.

Part II. For any α < ᾱ, by Proposition 4, E[µ̂∞] = ∞. For any α > ᾱ, by Proposition 4,

E
[
µ̂∞
]
= θ +

b(λ̂∞)

λ̂∞
≥ θ + b(λ̂∞) ≥ θ +

αγΦ

1 +∆
,

where the first inequality follows from λ̂∞ ≤ 1, and the second inequality follows from Lemma 1

and the fact that b(·) is increasing. It follows that limα→∞ E[µ̂∞] = ∞.

Part III. Let F (·) be the CDF of the standard-normal distribution, and pick some µ̂ ∈ R.

Because λ̂∞ > 0 for any α > ᾱ, and because st ∼ N (θ, ν2), we have

P
[
(1− λ̂∞)µ̂+ λ̂∞st < θ

]
= P

[
st <

θ − (1− λ̂∞)µ̂

λ̂∞

]
= F

(
− (1− λ̂∞)

λ̂∞

(θ − µ̂)

ν

)
.

The claim follows from the fact that F (x) > 0 for all x ∈ R.

Proof of Corollary 3. Fix any σ2
1 ∈ R≥0, α ∈ R>0, and γ ∈ R≥0.
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Part I. We first show that λ̂1 = 0 for any ν2 > 2Ω
γϕ1

(α2γ2Φ2+σ2
1). Notice that, for any λ̂1 ∈ [0, 1],

∂f

∂λ̂1

= α2γ2Φ2

∑∞
τ=2 δτ−1(τ − 1) (1−λ̂1)(

1+(τ−(t+1))λ̂1

)3(
1 +

∑∞
τ=2 δτ−1

(
1−λ̂1

1+(τ−2)λ̂1

)2)2 − γ

2
ν2

∞∑
τ=2

ϕτ−1
1(

1 + (τ − 2)λ̂1

)2
+ ν2

∞∑
τ=2

δτ−1
(τ − 1)(

1 + (τ − 2)λ̂1

)3 λ1 − λ̂1

1− λ1

< α2γ2Φ2Ω− γ

2
ν2ϕ1 + σ2

1Ω,

which is strictly negative for any ν2 > 2Ω
γϕ1

(α2γ2Φ2+σ2
1). As a result, for any ν2 > 2Ω

γϕ1
(α2γ2Φ2+σ2

1),

the agent to chooses λ̂1 = 0. By Lemma 3, and by the fact that λ̂t ≥ 0, it follows that λ̂∞ = 0.

With this, by Proposition 4, we also have E[µ̂∞] = ∞ for any ν2 > 2Ω
γϕ1

(α2γ2Φ2 + σ2
1).

Part II. We first show that limν2→0 λ̂∞ = 1 for any α > 0. For the sake of a contradiction,

suppose that limν2→0 λ̂∞ < 1, and notice that λ̂∞ must satisfy

0 ≥ ∂f

∂λ̂t

∣∣∣∣
λ̂t=λ̂∞,λt=λ̂∞/(1+λ̂∞)

= α2γ2Φ2

∑∞
τ=t+1 δτ−t(τ − t) (1−λ̂∞)(

1+(τ−(t+1))λ̂∞
)3(

1 +
∑∞

τ=t+1 δτ−t

(
1−λ̂∞

1+(τ−(t+1))λ̂∞

)2)2 − γ

2
ν2

∞∑
τ=t+1

ϕτ−t
1(

1 + (τ − (t+ 1))λ̂∞
)2

− λ̂2
∞ν2

∞∑
τ=t+1

δτ−t
(τ − t)(

1 + (τ − (t+ 1))λ̂∞
)3 .

As ν2 → 0, the right-hand side above approaches

lim
ν2→0

α2γ2Φ2

∑∞
τ=t+1 δτ−t(τ − t) (1−λ̂∞)(

1+(τ−(t+1))λ̂∞
)3(

1 +
∑∞

τ=t+1 δτ−t

(
1−λ̂∞

1+(τ−(t+1))λ̂∞

)2)2

 ,

which is strictly positive by our assumption towards a contradiction. Hence, the agent prefers to

increase λ̂∞; a contradiction. With this, by Proposition 4, we further have E[µ̂∞] = θ + αγΦ.

Proof of Corollary 4. Notice that f , as defined in the proof of Lemma 1, does not depend on µt.

Hence, also λ̂t is independent of µt, and as a result, λ̂∞ is independent of µ1. Moreover, as we
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have shown in the proof of Lemma 3, λ̂t (weakly) increases in λt and thus in σ2
t . Going further,

λt = λ̂t−1ν (weakly) increases in σ2
t−1 and hence λ̂t (weakly) increases in σ2

t−1. Iterating the same

argument, we conclude that, for any t ≥ 1, λ̂t (weakly) increases in σ2
1. By an argument similar to

that in the proof Proposition 4, this property is preserved in the limit.

Proof of Proposition 5. As in Section 3, we drop all subscripts referring to the period t.

Preliminaries. We observe that λ̂ is almost everywhere differentiable in σ2, ν2, and α. It is easy

to check that whenever λ̂ ∈ (0, 1), it is strictly monotone in all three parameters: (FD) is strictly

increasing in α and σ2, and it is strictly decreasing in ν2, so the claim follows from Theorem 10.6 in

Sundaram (1996). Moreover, fixing the other two parameters, we have λ̂ > 0 if and only if α is large

enough, σ2 is large enough, or ν2 is small enough. Hence, λ̂ is monotone in all three parameters.

And a real-valued, monotone function is almost everywhere differentiable, which was to be proven.

Going forward, we drop the qualifier “almost everywhere” when taking partial derivatives.

The agent’s ex-ante value function is given by

U(σ2, ν2;α, γ) = αγ
(
µ+b(λ̂)

)
− γ

2
λ̂ν2+2αµ− 1

2
σ2− 1

2

(
1+(1−λ̂)2

)
b(λ̂)2− 1

2
(λ−λ̂)2(σ2+ν2)− 1

2
λν2.

Part I. By the envelope theorem, we have ∂U
∂λ̂

∂λ̂
∂σ2 = 0. With this, we first observe that

∂U
∂σ2

=
∂U
∂λ̂

∂λ̂

∂σ2
− 1

2
− 1

2
(λ− λ̂)2 − ∂λ

∂σ2
(λ− λ̂)(σ2 + ν2)− 1

2

∂λ

∂σ2
ν2

= −1

2
− 1

2
(λ− λ̂)2 − (1− λ)(λ− λ̂)− 1

2
(1− λ)2

= −1

2

(
1 + (1− λ)2 + (λ− λ̂)(2− λ− λ̂)

)
,

where the second equality holds follow from ∂λ
∂σ2 = 1−λ

σ2+ν2
. Moreover, we have

∂2U
∂λ̂∂σ2

=
1

2

(
2− λ− λ̂+ λ− λ̂

)
= 1− λ̂ > 0,

which in turn implies

∂U
∂σ2

≤ ∂U
∂σ2

∣∣∣∣
λ̂=1

= −1

2
.
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Second, we observe that

∂U
∂ν2

=
∂U
∂λ̂

∂λ̂

∂ν2
− γ

2
λ̂− 1

2
(λ− λ̂)2 − ∂λ

∂ν2
(λ− λ̂)(σ2 + ν2) +

1

2

∂λ

∂ν2
σ2

= −γ

2
λ̂− 1

2
(λ− λ̂)2 + λ(λ− λ̂)− 1

2
λ2

= −1

2
λ̂(γ + λ̂) ≤ 0,

where the second equality holds by the envelope theorem, which gives ∂U
∂λ̂

∂λ̂
∂ν2

= 0, and ∂λ
∂σ2 = −λ

σ2+ν2
.

Part II. We first observe that

∂2U
∂α∂σ2

=
∂2U

∂λ̂∂σ2

∂λ̂

∂α
.

By Part I, ∂2U
∂λ̂∂σ2

> 0, and by our preliminary considerations, ∂λ̂
∂α ≥ 0. Hence, ∂2U

∂α∂σ2 ≥ 0.

Second, we observe that

∂2U
∂α∂ν2

=
∂2U

∂λ̂∂ν2
∂λ̂

∂α
= −1

2
(γ + 2λ̂)

∂λ̂

∂α
,

which is weakly negative again by our preliminary considerations.

Part III. By Part II, we know that

∂

∂α

(
∂U
∂σ2

− ∂U
∂ν2

)
≥ 0.

Moreover, it is easy to check that for any λ̂ < 1, (FD) in the proof of Proposition 2 diverges to

infinity as α → ∞. Hence, we must have limα→∞ λ̂ = 1, which in turn implies that

lim
α→∞

(
∂U
∂σ2

− ∂U
∂ν2

)
= lim

λ̂→1

(
∂U
∂σ2

− ∂U
∂ν2

)
= −1

2
+

1

2
(1 + γ) =

γ

2
> 0.

Hence, for any γ > 0, there exists an α̌ ∈ R>0, so that for all α > α̌ and all σ2 ∈ R≥0 and ν2 ∈ R>0,

∂

∂σ2
U(σ2, ν2;α, γ) >

∂

∂ν2
U(σ2, ν2;α, γ).

Proof of Proposition 6. Since the agent thinks ahead only one period, upon delaying to receive the

additional signal in period t, she expects to get it in period t+1. We start by calculating the value

of receiving the signal in period t, which we denote by Unow, and the value of receiving it in period

t+ 1, which we denote by Ulater, for an arbitrary original variance σ2
t . For that, we define as Ubase
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the agent’s utility absent the additional signal, and we make two preliminary observations. First,

we observe that getting the signal in t reduces the original variance from σ2
t to

σ2
t
ν2

d

σ2
t +

ν2

d

=
σ2
t ν

2

dσ2
t + ν2

.

Second, because all signals are normally distributed, we can think of getting the additional signal

in period t+ 1 as lowering the variance of the next regular signal from ν2 to ν2

d+1 .

Recycling calculations from the proof of Proposotion 5, we obtain

Unow = −
∫ σ2

t

σ2
t ν

2

dσ2
t +ν2

∂

∂σ2
U(σ2, ν2;α, γ) dσ2 + Ubase

=
1

2

∫ σ2
t

σ2
t ν

2

dσ2
t +ν2

1 + (1− λt)
2 + (λt − λ̂t)(2− λt − λ̂t) dσ

2 + Ubase.

Similarly, we obtain

Ulater = −
∫ ν2

ν2

d+1

∂

∂ν2
U(σ2, ν2;α, γ) dν2 + Ubase

=
1

2

∫ ν2

ν2

d+1

λ̂t(γ + λ̂t) dν
2 + Ubase.

Next, we derive the value of delaying the signal to the next period:

Ulater − Unow =
1

2

∫ ν2

ν2

d+1

λ̂t(γ + λ̂t) dν
2 − 1

2

∫ σ2
t

σ2
t ν

2

dσ2
t +ν2

1 + (1− λt)
2 + (λt − λ̂t)(2− λt − λ̂t) dσ

2.

Because both integrands on the right-hand side above are positive and can be bounded from above

by a constant, by the dominated convergence theorem, we have

lim
α→∞

(
Ulater − Unow

)
=

1

2

∫ ν2

ν2

d+1

lim
α→∞

λ̂t(γ + λ̂t) dν
2 − 1

2

∫ σ2
t

σ2
t ν

2

dσ2
t +ν2

lim
α→∞

1 + (1− λt)
2 + (λt − λ̂t)(2− λt − λ̂t) dσ

2

=
1

2

∫ ν2

ν2

d+1

γ + 1 dν2 − 1

2

∫ σ2
t

σ2
t ν

2

dσ2
t +ν2

1 dσ2

=
1

2

(
(γ + 1)

d

d+ 1
ν2 − dσ2

t

dσ2
t + ν2

σ2
t

)
,

where the second equality uses that limα→∞ λ̂t = 1. The above is strictly positive if and only if

γ >
σ2
t

ν2
dσ2

t + σ2
t

dσ2
t + ν2

− 1.
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Hence, for any σ2
t ≤ ν2 and γ > 0, there exists α′ = α′(σ2

t ) such that for any α > α′, Ulater > Unow.

To complete the proof, let σ2
1 ≤ ν2 and observe that for any t ≥ 2, we have σ2

t = λ̂t−1ν
2 ≤ ν2.

Next, we observe that, by Part I of Lemma 3, we have σ2
t ∈ I := [min{σ2

1, λ̂∞ν2},max{σ2
1, λ̂∞ν2}]

for any t. Finally, notice that α′ = α′(σ2
t ) continuously changes with σ2

t . Hence, since I is compact,

α̂ := maxσ2
t∈I α

′(σ2
t ) exists. Fixing γ > 0, any agent with α > α̂ thus delays the signal eternally.
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This online appendix contains additional derivations used in the proofs provided in the main

text as well as some additional results on model variations and robustness.
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A Preliminaries: Deriving the Objective Function

A.1 The Case of T = 2

As in the main text, we drop all subscripts referring to the period t, and we normalize δ = 1 and

ϕ = 1. Fixing a chosen mean µ̂ and weight on the signal λ̂, the agent correctly predicts to choose

ã2(s) = (1− λ̂)µ̂+ λ̂s

in t = 2. Using this, we can calculate the agent’s anticipatory utility

Eθ,s
µ̂,σ̂2

[
u(θ, ã2(s))

]
= αEθ,s

µ̂,σ̂2

[
θ
]
− 1

2
Eθ,s
µ̂,σ̂2

[
((1− λ̂)µ̂+ λ̂s− θ)2

]
= αµ̂− 1

2
λ̂ν2

= α
(
µ+ b̂

)
− 1

2
λ̂ν2,

where b̂ is the chosen bias in the agent’s mean belief in t = 1.



The agent’s expected consumption utility in the first period then is

Eθ
µ,σ2

[
u(θ, â1)

]
= αµ− 1

2
Eθ
µ,σ2

[
(µ+ b̂− θ)2

]
= αµ− 1

2
Eθ
µ,σ2

[
(µ− θ)2 + 2b̂(µ− θ) + b̂2

]
= αµ− 1

2
σ2 − 1

2
b̂2,

while her expected consumption utility in the second period is

Eθ,s
µ,σ2

[
u(θ, â2(s))

]
= αµ− 1

2
Es
µ,σ2

[
Eθ
µ,σ2

[
((1− λ̂)(µ+ b̂) + λ̂s− θ)2|s

]]
= αµ− 1

2
Es
µ,σ2

[
Eθ
µ,σ2

[
((1− λ̂)µ+ λ̂s− θ)2|s

]]
− Es

µ,σ2

[
Eθ
µ,σ2

[
((1− λ̂)µ+ λ̂s− θ)(1− λ̂)b̂|s

]]
− 1

2
(1− λ̂)2b̂2.

First, because Eθ
µ,σ2 [θ|s] = (1− λ)µ+ λs and Es

µ,σ2 [s] = µ, we have

Es
µ,σ2

[
Eθ
µ,σ2

[
(1− λ̂)µ+ λ̂s− θ|s

]]
= Es

µ,σ2

[
(λ− λ̂)(µ− s)

]
= 0.

Second, because ν2 = Es
µ,σ2 [s

2|θ]− θ2 and σ2 = Eθ
µ,σ2 [θ

2]− µ2,

Es
µ,σ2

[
(µ− s)2

]
= Es

µ,σ2

[
s2
]
− µ2 = Eθ

µ,σ2

[
Es
µ,σ2

[
s2|θ

]]
− µ2 = Eθ

µ,σ2

[
ν2 + θ2

]
− µ2 = ν2 + σ2,

where the second equality holds by the law of iterated expectations.

Third, since Eθ
µ,σ2 [θ|s] = (1− λ)µ+ λs and Es

µ,σ2

[
(µ− s)2

]
= σ2 + ν2,

Es
µ,σ2

[
Eθ
µ,σ2

[
((1− λ̂)µ+ λ̂s− θ)2|s

]]
= Es

µ,σ2

[
Eθ
µ,σ2

[
((λ− λ̂)(µ− s) + (1− λ)µ+ λs− θ)2|s

]]
= (λ− λ̂)2Es

µ,σ2

[
(µ− s)2

]
+ Es

µ,σ2

[
Eθ
µ,σ2

[
((1− λ)µ+ λs− θ)2|s

]]
= (λ− λ̂)2(σ2 + ν2) + λν2.

We thus conclude that

Eθ,s
µ,σ2

[
u(θ, â2(s))

]
= αµ− 1

2
(λ− λ̂)2(σ2 + ν2)− 1

2
λν2 − 1

2
(1− λ̂)2b̂2.

Putting all of this together, and plugging in the optimal mean bias b̂ derived in Proposition 1,

we arrive at the objective function in Eq. (5) of the main text.
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A.2 The General Case

Consider period t, and fix µ̂t as well as λ̂t. For every τ ∈ {t+ 1, . . . , T − 1}, let

λ̃τ =
λ̂t

1 + (τ − t)λ̂t

be the weight on signal sτ implied by Bayesian updating based on the chosen weight on the next

signal, λ̂t. We first observe that, for every τ ∈ {t+ 1, . . . , T − 1}, we have

τ−1∏
ℓ=t+1

1−λ̃ℓ =

τ−1∏
ℓ=t+1

1 + (ℓ− (t+ 1))λ̂t

1 + (ℓ− t)λ̂t

=
1

1 + λ̂t

1 + λ̂t

1 + 2λ̂t

· · · 1 + (τ − (t+ 2))λ̂t

1 + (τ − (t+ 1))λ̂t

=
1

1 + (τ − (t+ 1))λ̂t

and, for every ℓ ∈ {t+ 1, . . . , τ − 1},

λ̃ℓ

τ−1∏
k=ℓ+1

1− λ̃k =
λ̂t

1 + (ℓ− t)λ̂t

1 + (ℓ− t)λ̂t

1 + (τ − (t+ 1))λ̂t

=
λ̂t

1 + (τ − (t+ 1))λ̂t

.

Thus, from the perspective of period t, the agent expects to choose

ãτ (s
τ
t ) = µ̂t(1− λ̂t)

τ−1∏
ℓ=t+1

(1− λ̃ℓ) + stλ̂t

τ−1∏
k=t+1

(1− λ̃k) +

τ−1∑
ℓ=t+1

sℓλ̃ℓ

τ−1∏
k=ℓ+1

(1− λ̃k)

= µ̂t
1− λ̂t

1 + (τ − (t+ 1))λ̂t

+
λ̂t(τ − t)

1 + (τ − (t+ 1))λ̂t︸ ︷︷ ︸
=: wτ

t

1

(τ − t)

τ−1∑
ℓ=t

sℓ︸ ︷︷ ︸
=: Sτ

t

=
(
1− wτ

t (λ̂t)
)(
µt + b̂t

)
+ wτ

t (λ̂t)Sτ
t ,

where wτ
t ∈ [0, 1] and Sτ

t ∼ N (θ, ν2/(τ−t)).

By the same arguments as in Online Appendix A.1, for every τ ∈ {t+ 1, . . . , T}, we have

Eθ,sτt
µt,σ2

t

[
u(θ, ãτ (s

τ
t ))
]
= αµt −

1

2

(
wτ
t (λt)− wτ

t (λ̂t)
)2(

σ2
t +

ν2

τ − t

)
− 1

2
wτ
t (λt)ν

2 − 1

2

(
1− wτ

t (λ̂t)
)2
b̂2t ,

where λt is the weight on signal st implied by the agent’s genuine belief N (µt, σ
2
t ) and Bayes’ rule.

Moreover, again by the same arguments as in Online Appendix A.1, we have

Eθ
µt,σ2

t

[
u(θ, ât)

]
= αµt −

1

2
σ2
t −

1

2
b̂2t
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Finally, anticipatory utility from imagining the future in τ ∈ {t+ 1, . . . , T} periods is given by

Eθ,sτt
µ̂t,σ̂2

t

[
ϕτ−tu

(
θ, ãτ (s

t
τ )
)]

= ϕτ−t

(
α(µ+ b̂t)−

1

2
wτ
t (λ̂t)

ν2

τ − t

)
.

Putting all of this together, we conclude that the agent chooses b̂t and λ̂t as to maximize

−1

2
b̂2t −

1

2

T∑
τ=t+1

δτ−t

((
wτ
t (λt)− wτ

t (λ̂t)
)2(

σ2
t +

ν2

τ − t

)
+
(
1− wτ

t (λ̂t)
)2
b̂2t

)

+ γ
T∑

τ=t+1

ϕτ−t

(
αb̂t −

1

2
wτ
t (λ̂t)

ν2

τ − t

)
.

B Information Delay and Discounting

In this online appendix, we want to argue that delaying information becomes even more attractive

when the agent discounts the future less. To make this point as concisely as possible, suppose that

the additional signal is fully revealing the state while the regular signals are pure noise.

When receiving the signal now, the agent has no incentive to remain uncertain, since there are

no future signals. She thus chooses to be dogmatic. In expectation, receiving the signal now yields

Unow = αµ− 1

2
b̂2now +

∞∑
t=1

δt

(
αµ− 1

2
b̂2now

)
+ γ

∞∑
t=1

ϕtα
(
µ+ b̂now

)
.

As a result, the agent optimally chooses a mean bias of b̂now = αγΦ
1+∆ . When delaying the signal, the

agent plans to receive it in the next period, and as long as she does not choose to be dogmatic, she

expects to take the correct action in all future periods. The agent is therefore indifferent between

choosing any non-zero variance, and delaying the signal yields an expected utility of

Ulater = αµ− 1

2
σ2
1 −

1

2
b̂2later +

∞∑
t=1

δtαµ+ γ

∞∑
t=1

ϕtα
(
µ+ b̂later

)
.

The optimal mean bias in this case is given by b̂later = αγΦ > b̂now. Comparing both, we get

Ulater − Unow = −1

2
σ2
1 +Φ2 ∆

1 +∆

α2γ2

2
,

which increases in Φ and ∆. The agent eternally delays information if and only if α >
√

σ2
1(1+∆)

γ2Φ2∆
.
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C The Cost of Belief Distortions

Following Brunnermeier and Parker (2005), we model an implicit cost of distorting one’s belief,

which comes in the form of worse actions. We can, however, make this cost explicit, allowing us to

compare our model more easily to alternative approaches like Caplin and Leahy (2019).

We start by re-writing our model in terms of an explicit “cost from distorted beliefs.” Consider

an original belief θ ∼ N (µt, σ
2
t ) and a chosen belief θ ∼ N (µ̂t, σ̂

2
t ). We define as

C
(
(µt, σ

2
t ), (µ̂t, σ̂

2
t )
)
:= Eµt,σ2

t

[
u(θ, µt) +

T∑
τ=t+1

δτ−tu
(
θ, µτ (s

τ
t )
)
− u(θ, µ̂t)−

T∑
τ=t+1

δτ−tu
(
θ, µ̃τ (s

τ
t )
)]

the expected loss in consumption utility from choosing, and acting on, a belief different from the

original one.1 Using this new notation, the belief our agent chooses in period t maximizes

Eµ̂t,σ̂2
t

[
T∑

τ=t+1

ϕτ−tu
(
θ, µ̃τ (s

τ
t )
)]

︸ ︷︷ ︸
anticipatory utility

− 1

γ
C
(
(µt, σ

2
t ), (µ̂t, σ̂

2
t )
)

︸ ︷︷ ︸
cost of belief distortions

.

Notice that C
(
(µt, σ

2
t ), (µ̂t, σ̂

2
t )
)
≥ 0, holding with equality if and only if (µt, σ

2
t ) = (µ̂t, σ̂

2
t ). We

have thus re-written our model in terms of a proper cost function, as in Caplin and Leahy (2019).

We conclude this section by comparing our cost function above to the one used in Caplin and

Leahy (2019, Eq. (2) and Section 5.1). Similar calculations as in Appendix A.2 yield

C
(
(µt, σ

2
t ), (µ̂t, σ̂

2
t )
)
=

1

2
(µ̂t−µt)

2+
1

2

T∑
τ=t+1

δτ−t

((
wτ
t (λt)−wτ

t (λ̂t)
)2(

σ2
t +

ν2

τ − t

)
+
(
1−wτ

t (λ̂t)
)2
(µ̂t−µt)

2

)
.

Caplin and Leahy (2019) define costs of belief distortions via the Kullback-Leibler (KL) divergence

from the original to the chosen belief. Setting ∆τ := 1 +
∑T

τ=t+1 δτ−t, their cost function is

CCL

(
(µt, σ

2
t ), (µ̂t, σ̂

2
t )
)
:=

1

∆τ

(
KL
(
(µ̂t, σ̂

2
t )||(µt, σ

2
t )
)
+

T∑
τ=t+1

δτ−tKL
(
(µ̃τ (s

τ
t ), σ̂

2
τ )||(µτ (s

τ
t ), σ

2
τ )
))

.

Notice that for normal distributions N (µt, σ
2
t ) and N (µ̂t, σ̂

2
t ), we have2

KL
(
(µ̂t, σ̂

2
t )||(µt, σ

2
t )
)
= log

(
σt
σ̂t

)
+

σ̂2
t + (µ̂t − µt)

2

2σ2
t

− 1

2
.

1 For a vector of signal realizations sτt = (st, . . . , sτ−1), we denote a Bayesian’s posterior mean in τ as µt(s
τ
t ).

2 See https://en.wikipedia.org/wiki/KullbackLeibler_divergence (accessed on November 12, 2024).
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Again using similar calculations as in Appendix A.2 (and setting δ0 = 1), we obtain

CCL

(
(µt, σ

2
t ), (µ̂t, σ̂

2
t )
)
=

1

∆τσ2
t

C
(
(µt, σ

2
t ), (µ̂t, σ̂

2
t )
)
+

T∑
τ=t

δτ−t

∆τ

{
log

(
στ
σ̂τ

)
+

1

2

σ̂2
τ

σ2
τ

− 1

2

}
.

We observe that the cost function in Caplin and Leahy (2019) places a higher cost on distortions

(in either direction) of the variance. In particular, for any fixed µt, σ
2
t , and µ̂t, CCL

(
(µt, σ

2
t ), (µ̂t, σ̂

2
t )
)

approaches infinity as σ̂2
t → 0. Hence, with this alternative cost function, the agent would not

become dogmatic. Otherwise, their cost function has a shape similar to our utility-based one.

D Alternative Models

D.1 Distorting the Signal Structure

We study an alternative model in which the agent distorts her beliefs about the (distribution) of

the signals. In doing so, we focus on short-run beliefs. The signal is drawn from N (θ, ν2). Before

observing the signal, the agent can choose a belief about the signal structure s ∼ N (µ̂s, ν̂
2). This is

equivalent to choosing a bias b̂ ∈ R such that µ̂s = θ+ b̂ and a weight on the signal λ̂s ∈ [0, 1]. The

agent starts out with a prior θ ∼ N (µ1, σ
2
1), and updates via Bayes’ rule using the chosen signal

structure. In the second period, the agent then has to act on the belief implied by her chosen signal

structure. We analyze two versions of the model that differ in when exactly the agent chooses her

belief. To make the results comparable to those in Section 3, we again normalize δ1 = 1 and ϕ1 = 1.

Ex ante choice Suppose that the agent chooses her belief about the signal structure before

observing the signal realization. The exact timing is summarized in Figure 1.

Choose

b̂ and λ̂s

Choose

a1

Feel

u(a1, θ) + Ant. utility

t = 1

Observe

s

Update to

N
(
(1− λ̂s)µ1 + λ̂s(s− b̂), (1− λ̂s)σ

2
1

) Choose

a2

Feel

u(a2, θ)

t = 2

Figure 1: Timing of events with ex ante choice of signal structure.

We start by observing that, for a given b̂ and λ̂s, the agent correctly predicts to choose

a2(s) = Eθ
µ1,σ2

1 ,b̂,ν̂
2

[
θ|s
]
= (1− λ̂s)µ1 + λ̂s(s− b̂)

6



in the second period. Importantly, although the agent biases her belief about the signal structure,

her (posterior) belief about the state satisfies the law of iterated expectations:

Es
µ1,σ2

1 ,b̂,ν̂
2

[
Eθ
µ1,σ2

1 ,b̂,ν̂
2

[
θ|s
]]

= µ1.

As a consequence, the agent cannot be systematically overoptimistic about the state.

Next, we observe that in t = 1, the agent chooses a1 = µ1, resulting in an expected loss of σ2
1.

Combining both observations, we conclude that the agent chooses b̂ and λ̂s as to maximize

αµ1 −
1

2
σ2
1 + αµ1 −

1

2
Eθ,s
µ1,σ2

1 ,θ,ν
2

[(
(1− λ̂s)µ1 + λ̂s(s− b̂)− θ

)2]
︸ ︷︷ ︸

expected consumption utility

+ γ

(
αµ1 −

1

2
(1− λ̂s)σ

2
1

)
︸ ︷︷ ︸

anticipatory utility

.

Because the agent’s belief satisfies the law of iterated expectations, choosing b̂ ̸= 0 has no benefit

in terms of anticipatory utility. Since b̂ ̸= 0 results in worse actions, however, the agent optimally

chooses b̂ = 0. This, in turn, implies that the agent chooses λ̂s as to maximize

−1

2
Eθ,s
µ1,σ2

1 ,θ,ν
2

[(
(1− λ̂s)µ1 + λ̂ss− θ

)2]− γ

2
(1− λ̂s)σ

2
1.

By the same arguments as in Appendix A.1, the above can be re-written as

−1

2
(λ− λ̂s)

2(σ2
1 + ν2)− γ

2
(1− λ̂s)σ

2
1.

This objective function is strictly concave in λ̂s, so that the optimal weight on the signal satisfies

(λ− λ̂s)(σ
2
1 + ν2) +

γ

2
σ2
1 ≥ 0.

We conclude:

Proposition 1 (Ex-Ante Optimal Signal Structure).

The agent chooses µ̂s = θ and λ̂s = min
{
1, λγ+2

2

}
, which results in a posterior mean of

µ2(s) =


µ1 + λγ+2

2 (s− µ1) if λ ≤ 2
2+γ ,

s if λ > 2
2+γ .

7



Contrasting this result with Propositions 1 and 2 in the main text, there are three stark differ-

ences. First, an agent who chooses a belief about the signal structure, is, on average, well calibrated.

Second, the agent’s posterior is independent of α. Third, the agent is necessarily erratic, as over-

stating the precision of the signal is the only way in which she can reduce her anxiety regarding

the second-period action. These results seem less in line with anecdotal evidence.

Ex post choice Suppose that the agent chooses her belief about the signal structure after ob-

serving the signal realization. To make the results comparable to the ones above (and those in

Section 3), we assume that the agent observes the signal in t = 1; before she feels anticipatory

utility, but after she chose her first-period action. The exact timing is summarized in Figure 2.

Choose

a1

t = 1

Observe

s

Choose

b̂ and λ̂s

Update to

N
(
(1− λ̂s)µ1 + λ̂s(s− b̂), (1− λ̂s)σ

2
1

) Feel

u(a1, θ) + Ant. utility

Choose

a2

Feel

u(a2, θ)

t = 2

Figure 2: Timing of events with ex post choice of signal structure.

Fix a signal realization s. For a given b̂ and λ̂s, in t = 2, the agent predicts to choose

a2(s) = (1− λ̂s)µ1 + λ̂s(s− b̂).

Hence, the agent chooses b̂ and λ̂s as to maximize

−1

2
Eθ
µ1,σ2

1

[(
(1− λ̂s)µ1 + λ̂s(s− b̂)− θ

)2]
+ γ

(
α
(
(1− λ̂s)µ1 + λ̂s(s− b̂)

)
− 1

2
(1− λ̂s)σ

2
1

)
.

For a given λ̂s, the objective function is strictly concave in b̂. The optimal b̂ thus satisfies

λ̂s

(
(1− λ̂s)µ1 + λ̂s(s− b̂)− µ1

)
− γαλ̂s = 0,

or, equivalently

−b̂ = µ1 − s+
γα

λ̂s

. (1)

Using (1), the agent chooses λ̂s as to maximize

−1

2
Eθ
µ1,σ2

1

[(
µ1 + αγ − θ

)2]
+ γ

(
α
(
µ1 + αγ

)
− 1

2
(1− λ̂s)σ

2
1

)
,

and thus chooses λ̂s = 1. We conclude:
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Proposition 2 (Ex-Post Optimal Signal Structure).

The agent chooses µ̂s = θ−(µ1−s)−γα and λ̂s = 1, resulting in a posterior mean of µ2 = µ1+αγ.

Contrasting this result with Propositions 1 and 2 in the main text, we make two observations.

First, when choosing her belief about the signal structure, the agent arrives at the same posterior

belief as an agent with the same preferences who chooses a dogmatic prior. (Notice that, for any

preference parameters, we can indeed find a signal structure that is sufficiently uninformative, such

that a dogmatic prior is optimal.) Second, the posterior belief is independent of the signal. An

agent who chooses her prior belief, in contrast, responds to sufficiently informative signals.

D.2 Anticipating Anticipatory Utility

In this online appendix, we consider an agent who anticipates future anticipatory utility (as in

Brunnermeier and Parker, 2005, Brunnermeier et al., 2017). Notice that our analysis of short-run

beliefs in Section 3 still applies. We thus focus on long-run beliefs (i.e., T = ∞). We show that,

irrespective of her preferences over the state, such an agent eventually develops a dogma.

Consider an arbitrary period t ≥ 1. We start by calculating the anticipatory utility that the

agent expects to feel in a future period τ ≥ t+ 1. When choosing µ̂t ∈ R and λ̂t ∈ [0, 1] in period

t, the agent expects to hold a period-τ belief that is normally distributed with

µ̃τ (s
τ
t ) = µ̂t

(
1− wτ

t (λ̂t)
)
+ wτ

t (λ̂t)
1

τ − t

τ−1∑
ℓ=t

sℓ and σ̃2
τ =

λ̂t

1 + (τ − (t+ 1))λ̂t

ν2.

Notice that the anticipated mean belief depends on the signal realizations sτt = (st, . . . sτ−1) while

the anticipated variance of her belief does not. The agent forms an expectation based on her original

belief in period t, and her expected mean belief in period τ is thus given by

Esτt
µt,σ2

t

[
µ̃τ (s

τ
t )
]
= µt +

(
1− wτ

t (λ̂t)
)
b̂t.

Hence, from the perspective of period t, the expected anticipatory utility in period τ equals

γEsτt
µt,σ2

t

[ ∞∑
ℓ=τ+1

ϕℓ−τ

{
αµ̃τ (s

τ
t )−

1

2
σ̃2
ℓ

}]
= γαΦ

(
µt +

(
1− wτ

t (λ̂t)
)
b̂t

)
− γ

2

∞∑
ℓ=τ+1

ϕℓ−τw
ℓ
t(λ̂t)

ν2

ℓ− t
.
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Following Brunnermeier et al. (2017), we assume that the agent discounts anticipatory utility in

τ − t periods from now with the same discount factor δτ−t that she applies to consumption utility.

Setting δ0 := 1, and recycling calculations from Appendix A.2, the agent’s objective function is

−1

2
b̂2t −

1

2

∞∑
τ=t+1

δτ−t

((
wτ
t (λt)− wτ

t (λ̂t)
)2(

σ2
t +

ν2

τ − t

)
+
(
1− wτ

t (λ̂t)
)2
b̂2t

)

+ γαb̂tΦ

(
1 +

∞∑
τ=t+1

δτ−t

(
1− wτ

t (λ̂t)
))

− γ

2

∞∑
τ=t+1

wτ
t (λ̂t)

ν2

τ − t

τ∑
ℓ=t+1

ϕℓ−tδτ−ℓ.

(2)

Proposition 3 (Anticipating Anticipatory Utility Results in Dogmatic Beliefs).

The agent develops a dogma. In particular, λ̂∞ = 0 and, for any t large enough, µ̂t+1 − µ̂t = αγΦ.

Proof. As for the agent who does not anticipate future anticipatory utility, for any fixed λ̂t ∈ [0, 1],

the objective function is concave in b̂t. Fixing λ̂t ∈ [0, 1], we thus obtain the optimal mean bias,

b̂t = αγΦ
1 +

∑∞
τ=t+1 δτ−t

(
1− wτ

t (λ̂t)
)

1 +
∑∞

τ=t+1 δτ−t

(
1− wτ

t (λ̂t)
)2 , (3)

by solving the first-order condition. Plugging (3) into (2), the agent chooses λ̂t as to maximize

f̃(λ̂t) :=
1

2
α2γ2Φ2

(
1 +

∑∞
τ=t+1 δτ−t

(
1− wτ

t (λ̂t)
))2

1 +
∑∞

τ=t+1 δτ−t

(
1− wτ

t (λ̂t)
)2 − γ

2

∞∑
τ=t+1

wτ
t (λ̂t)

ν2

τ − t

τ∑
ℓ=t+1

ϕℓ−tδτ−ℓ

− 1

2

∞∑
τ=t+1

δτ−t

(
wτ
t (λt)− wτ

t (λ̂t)
)2(

σ2
t +

ν2

τ − t

)
.

Next, we show λ̂t < λt for any λt ∈ (0, 1). Recycling calculations from the proof of Lemma 1,

f̃ ′(λ̂t) =
1

2
α2γ2Φ2 ∂

∂λ̂t


(
1 +

∑∞
τ=t+1 δτ−t

(
1− wτ

t (λ̂t)
))2

1 +
∑∞

τ=t+1 δτ−t

(
1− wτ

t (λ̂t)
)2


− γ

2
ν2

∞∑
τ=t+1

1(
1 + (τ − (t+ 1))λ̂t

)2 τ∑
ℓ=t+1

ϕℓ−tδτ−ℓ + ν2
∞∑

τ=t+1

δτ−t
(τ − t)(

1 + (τ − (t+ 1))λ̂t

)3 λt − λ̂t

1− λt
.

With the above, it is sufficient to verify that for any λ̂t ∈ [0, 1], we have

∂

∂λ̂t


(
1 +

∑∞
τ=t+1 δτ−t

(
1− wτ

t (λ̂t)
))2

1 +
∑∞

τ=t+1 δτ−t

(
1− wτ

t (λ̂t)
)2

 ≤ 0. (4)
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Notice that the inequality in (4) holds if and only if

−2

(
1 +

∞∑
τ=t+1

δτ−t

(
1−wτ

t (λ̂t)
))( ∞∑

τ=t+1

δτ−t
∂

∂λ̂t

wτ
t (λ̂t)

)(
1 +

∞∑
τ=t+1

δτ−t

(
1− wτ

t (λ̂t)
)2)

+ 2

( ∞∑
τ=t+1

δτ−t

(
1− wτ

t (λ̂t)
) ∂

∂λ̂t

wτ
t

)(
1 +

∞∑
τ=t+1

δτ−t

(
1− wτ

t (λ̂t)
))2

≤ 0

or, equivalently,

−
( ∞∑

τ=t+1

δτ−t
∂

∂λ̂t

wτ
t (λ̂t)

)(
1 +

∞∑
τ=t+1

δτ−t

(
1− wτ

t (λ̂t)
)2)

+

( ∞∑
τ=t+1

δτ−t

(
1− wτ

t (λ̂t)
) ∂

∂λ̂t

wτ
t

)(
1 +

∞∑
τ=t+1

δτ−t

(
1− wτ

t (λ̂t)
))

≤ 0.

Recall, again from the proof of Lemma 1, that

wτ
t (λ̂t) =

λ̂t(τ − t)

1 + (τ − (t+ 1))λ̂t

and
∂

∂λ̂t

wτ
t (λ̂t) =

(τ − t)(
1 + (τ − (t+ 1))λ̂t

)2 .
Hence, we can conclude that( ∞∑

τ=t+1

δτ−t
∂

∂λ̂t

wτ
t (λ̂t)

)( ∞∑
τ=t+1

δτ−t

(
1− wτ

t (λ̂t)
)
wτ
t (λ̂t)

)

−
( ∞∑

τ=t+1

δτ−tw
τ
t (λ̂t)

∂

∂λ̂t

wτ
t

)(
1 +

∞∑
τ=t+1

δτ−t

(
1− wτ

t (λ̂t)
))

= λ̂t(1− λ̂t)

( ∞∑
τ=t+1

δτ−t
(τ − t)(

1 + (τ − (t+ 1))λ̂t

)2
)2

− λ̂t

( ∞∑
τ=t+1

δτ−t
(τ − t)2(

1 + (τ − (t+ 1))λ̂t

)3
)(

1 +
∞∑

τ=t+1

δτ−t
1− λ̂t

1 + (τ − (t+ 1))λ̂t

)

≤ λ̂t(1− λ̂t)

( ∞∑
τ=t+1

δ2τ−t

(τ − t)2(
1 + (τ − (t+ 1))λ̂t

)4
)

− λ̂t

( ∞∑
τ=t+1

δτ−t
(τ − t)2(

1 + (τ − (t+ 1))λ̂t

)3
)

≤ λ̂t(1− λ̂t)

( ∞∑
τ=t+1

δτ−t
(τ − t)2(

1 + (τ − (t+ 1))λ̂t

)3
)

− λ̂t

( ∞∑
τ=t+1

δτ−t
(τ − t)2(

1 + (τ − (t+ 1))λ̂t

)3
)

= −λ̂2
t

( ∞∑
τ=t+1

δτ−t
(τ − t)2(

1 + (τ − (t+ 1))λ̂t

)3
)

≤ 0,

where the first inequality follows from the triangle inequality and the second inequality follows from

δτ−t ∈ [0, 1] and (τ − (t+ 1))λ̂t ≥ 0. Hence, (4) indeed holds for any λ̂t ∈ [0, 1].
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To complete the proof, we first observe that

f̃ ′(0) = −γ

2
ν2

∞∑
τ=t+1

τ∑
ℓ=t+1

ϕℓ−tδτ−ℓ + ν2
λt

1− λt
Ω = −γ

2
ν2

∞∑
τ=t+1

τ∑
ℓ=t+1

ϕℓ−tδτ−ℓ + ν2λ̂t−1Ω,

which is strictly negative for any

λ̂t−1 <
γ

2Ω

∞∑
τ=t+1

τ∑
ℓ=t+1

ϕℓ−tδτ−ℓ.

By identical arguments as in the proofs of Proposition 3, the agent develops a dogma. Finally, we

observe that λ̂t = 0 implies b̂t = αγΦ, which in turn yields µ̂t+1 − µ̂t = αγΦ.
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